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1. Introduction

Topological phases of condensed matter have attracted 
immense attention ever since the first proposal in the 1980s 
[1] to use this concept to explain the properties of the quantum 
Hall effect in two-dimensional (2D) electronic systems under 
a strong external magnetic field [2]. The quantum Hall effect 
is manifested by a vanishing longitudinal conductance but 
nonzero quantized Hall conductance in a six-terminal Hall-bar 
measurement [2, 3]. The vanishing longitudinal conductance 
originates from the insulating bulk while the quantized Hall 
conductance arises intrinsically from the Berry curvatures of  
the filled magnetic Bloch bands, as reported by Thouless  
et al [1]. The Berry-curvature integration over the filled bands 
in the magnetic Brillouin-zone gives rise to an integer named 
as Thouless–Kohmoto–Nightingale–Nijs (TKNN) number. 

Later, this expression was recognized as the first Chern class 
of a U(1) principal fiber bundle on a torus, where the fibers and 
torus correspond respectively to the magnetic Bloch waves 
and the magnetic Brillouin zone [4, 5]. Therefore, the TKNN 
number is also known as the Chern number, which is a topo-
logical invariant in the sense that the integer will not change as 
long as the bulk band gap, wherein the Fermi level lies, is not 
closed by the external perturbations [6]. The Chern number 
is closely related to the amplitude of the quantized Hall con-
ductance in units of e2/h, reflecting the topological nature of 
quantum Hall effect, i.e. the Hall conductance is quantized as 
an integer as long as the bulk band gap remains open.

For an experimental sample with a finite size, the topology 
of the filled bands is reflected by the one-dimensional (1D) 
gapless chiral edge states according to the principle of the 
bulk-edge correspondence, where the Chern number counts 
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the number of edge states localized at each boundary between 
the quantum Hall effect and the vacuum [7]. Due to the topo-
logical protection of the one-way propagating characteristic at 
each boundary, the edge modes are robust against weak dis-
orders in any form. The high-precision of the quantized Hall 
resistance plateau has let the quantum Hall effect become a 
new method to determine the fine structure constant, a fun-
damental physical constant [3]. Moreover, the robustness fea-
ture together with the vanishing longitudinal resistance has 
attractive practical potential in design of dissipationless or 
low-power electronic devices.

However, to realize the quantum Hall effect, the most 
crucial requirement is to apply a strong magnetic field. 
Unfortunately, it is beyond the current state of technology 
to generate such a huge magnetic field outside the labora-
tory. Therefore, the question naturally arises: is it possible to 
achieve the quantum Hall effect in the absence of a strong 
magnetic field? It is known that the necessary condition to 
induce a Hall effect is to break the time-reversal invariance, 
which can be achieved by either an external magnetic field 
or the intrinsic ferromagnetism [8]. The former results in the 
ordinary Hall effect, while the latter produces the anomalous 
Hall effect. Both effects actually exhibit the same transport 
characteristics. In the 2D limit, the strong magnetic field can 
lead to Landau-level quantization, hence the quantum Hall 
effect [2, 3]. Therefore, the anomalous Hall effect is also 
expected to become quantized in 2D systems with ferromag-
netism by some means. Hereinbelow, we refer to the quantum 
Hall effect in the absence of the external magnetic field as the 
quantum anomalous Hall effect (QAHE). In 1988, Haldane 
[9] theoretically achieved this expectation by an exquisite toy 
model in a 2D honeycomb-lattice system by considering alter-
nating magnetic fields with zero net flux. However, since the 
host material of the 2D honeycomb-lattice was believed to be 
unrealistic up until 2004 and the experimental realization of  
alternative magnetic fluxes is also extremely difficult, the further 
progress towards the realization of the QAHE was seriously  
hampered. Only two alternative proposals in Kagomé lattice  
and disordered 2D ferromagnetic metals were reported [10, 11].  
Nevertheless, such a theoretical proposal not only raised the 
hope of achieving QAHE for dissipationless applications, but 
also immediately inspired great interest when the era of 2D 
materials finally comes.

On the other hand, during that period investigations of the 
dynamics of the magnetic Bloch electrons within the par-
tially occupied magnetic Bloch bands revealed the underlying 
importance of the Berry curvature in the dynamical processes 
[12, 13]. The further generalization to ordinary Bloch elec-
trons in crystals without a strong magnetic field opened up new 
grounds in the study of the topological properties of 2D electron 
gases [14]. Especially, this inspired a revisit to the old issues 
of the anomalous Hall effect including the spin-Hall effect 
[8]. Apart from the fundamental interest of the anomalous/
spin-Hall effect, potential applications in spintronics to gen-
erate dissipationless spin current further stimulated research, 
which led to the discovery of the topological contribution to 
the spin-Hall effect [15–19]. However, it is shown that the 
longitudinal charge current in the spin-Hall effect is nonzero 

hence dissipative. To overcome this difficulty, a spin-Hall insu-
lator was proposed by Murakami et al in 2004, wherein a finite 
spin-Hall conductance is expected in the bulk insulating/zero-
gap materials [20]. These pioneering works established a solid 
foundation for future research on topological phases.

The era of 2D materials started from the year of 2004, 
when graphene, a single layer of carbon atoms arranged in 
a honeycomb-lattice structure, was first successfully exfoli-
ated [21]. Its unique mechanical, electrical, and optical prop-
erties and its special linear-Dirac dispersion soon attracted 
great interest from various research fields, making it a star 
material [22]. However, its half-filled conduction bands with 
gapless Dirac dispersion limits its applications of graphene in 
semiconductor-based electronics. Different binary degrees of 
freedom (i.e. real spin, AB sublattices, ′KK  valleys, and top/
bottom layers) have been adopted to engineer bulk band gaps 
that are able to harbour various topological phases. In part-
icular, graphene provides a real 2D honeycomb-lattice plat-
form to revive Haldane’s proposal of the QAHE.

Soon after the experimental discovery of graphene, Kane 
and Mele pointed out that the intrinsic spin–orbit coupling 
from the next-nearest neighbor hopping plays the corresp-
onding role of the alternative magnetic flux in Haldane’s 
model [9, 23], which can open up a bulk band gap at the Dirac 
points to harbour two copies of QAHE that are respectively 
encoded with opposite spins and chiralities [23]. That is, oppo-
site Chern numbers are present for spin-up and spin-down 
electrons, respectively. The resulting spin-helical gapless  
edge states counter-propagate along the same boundary with 
opposite spins, which results in a vanishing charge Hall  
conductance yet quantized spin-Hall conductance. This phase 
was therefore called the quantum spin Hall effect (QSHE) 
[23], and it is preserved even when the spin is no longer a 
good quantum number, indicating its topological nature 
that is characterized by the Z2 topological order [24]. The 
Karmers-degenerate spin-helical edge states are robust against 
weak disorders due to the topological protection from time- 
reversal symmetry. This insulating phase is therefore also 
called a topological insulator (TI), to embrace a broader con-
notation in addition to the QSHE [24]. Although the Kane–
Mele model was theoretically shown to host a 2D Z2 TI phase, 
the extremely weak intrinsic spin–orbit coupling makes the 
TI unrealistic in pristine graphene by employing the current 
experimental techniques [25–29]. Yet, much effort has been 
put in enhancing the intrinsic-type spin–orbit coupling in  
graphene via some external means (e.g. by adsorbing 5d heavy 
atoms) [30] and in searching for new graphene-like materials 
(e.g. low-buckled honeycomb-lattice materials) that possess 
strong intrinsic spin–orbit coupling [31, 32].

Almost parallel to the proposal of Kane and Mele, Bernevig 
et al suggested another route, i.e. band inversion by spin–orbit 
coupling, to realize QSHE in strained zinc-blende semicon-
ductors [33] and HgTe quantum wells [34]. In 2007, one year 
after these theoretical proposals, QSHE was indeed exper-
imentally observed in inverted HgTe quantum wells [35]. 
These pioneering studies laid the foundations for the field of 
the Z2 TI, which was subsequently extended to three-dimen-
sional (3D) materials [36–39].
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Both the theoretical and experimental advances of 2D 
and 3D TIs have also inspired the exploration of the QAHE 
by breaking time-reversal symmetry. In 2010, it was theor-
etically predicted that the QAHE can be achieved after a band 
inversion that originates from the ferromagnetism in the 3D 
TI thin films [40]. Following this theoretical recipe, in 2013 
after three years of continuous effort, the QAHE was finally 
exper imentally observed in Cr-doped (Bi, Sb)2Te3 thin films 
[41]. Since then, there have been several follow-up observa-
tions of the QAHE in the same host materials of (Bi, Sb)2Te3 
doped with Cr [42, 43] or V [44] atoms. However, all the 
exper imental observations were achieved at extremely low 
temperatures (i.e. 30–  100 mK). Therefore, how to raise the  
temperature of the QAHE is a critical challenge for the  
communities of both condensed matter physics and materials 
science, from both the theoretical and experimental sides.

Engineering band gaps at the Dirac points of graphene 
is another rewarding route to realize the QAHE, which, in  
general, requires both spin–orbit coupling and intrinsic  
ferromagnetism [40]. Although the intrinsic spin–orbit coupling 
in graphene is extremely weak, there exists another extrin-
sically tunable spin–orbit coupling, i.e. Rashba spin–orbit  
coupling [45], which arises from the mirror-symmetry break-
ing about the graphene plane, e.g. by applying a perpendicular 
electric field [46]. In 2010, it was proposed that the QAHE 
can occur in graphene by simultaneously considering the 
Rashba spin–orbit coupling and out-of-plane exchange field 
(or Zeeman field), which can be introduced via the proximity 
effect through doping magn etic atoms or utilizing ferromagn-
etic insulating substrates [47–49]. Although the QAHE has not 
been experimentally realized in graphene yet, there has already 
been striking progress towards the ultimate realization of the 
QAHE. Recently, a sizable anomalous Hall conductance of 
σ ≈ e h0.2 /xy

2  has been experimentally observed in graphene 
proximity-coupled with a magnetic thin film YIG [50]. To 
expedite the definitive observation of QAHE in graphene, a 
crucial issue is to enlarge the Rashba spin–orbit coupling that 
is strongly dependent on the strength of the van der Waals inter-
action between the graphene sheet and the magnetic substrate.

In graphene, the binary ′KK  valley degree of freedom can 
also be adopted to design topological valleytronics similar to 
spintronics by leveraging the valley-pseudospin in the manner 
of electron spin [51]. The analogy between valley-pseudospin 
and electron spin also inspired the prediction of the quantum 
valley-Hall effect (QVHE), for which the K and ′K  valleys 
carry nonzero Chern numbers but with opposite signs [52]. 
Therefore, this phase is well-defined only when ′KK  valleys 
are decoupled in the absence of short-range scattering. This 
new phase can be realized by breaking the inversion sym-
metry, e.g. introducing the staggered AB sublattice potentials 
in monolayer graphene or applying a perpendicular electric 
field in the Bernal-stacked multilayer graphene [52–54]. It is 
noteworthy that, different from the QSHE, the bulk-edge cor-
respondence is absent in monolayer graphene but present in 
multilayer graphene.

Interestingly, when the QVHE coexists with the QAHE 
or TI, the resulting edge modes can even be robust against 
weak short-range scattering since the QVHE originates from 

the inversion symmetry breaking that is compatible with the 
preservation or breaking of the time-reversal invariance. In 
addition to the edge states, gapless interface modes can also 
be generated along the interface between two QVHEs with 
opposite valley topologies (except for the exact armchair case 
that exhibits an unavoidable band gap). These interface states 
are also known as topological confinement states, kink states,  
zero modes, or zero-line modes (ZLMs) in the literature.  
In order to manifest the formation along the line of zero  
electric field, for clarity, we shall refer to this as ZLMs. This 
kind of ZLMs have been shown to exist naturally at the inter-
faces between different topological phases [55].

In addition to those topological phases mentioned above, 
the topological-phase family also includes the Floquet topo-
logical insulator driven by the time-dependent periodic poten-
tial with gapless edge states in the quasi-energy spectrum  
[56, 57], and the topological crystalline insulators that are 
topologically protected by mirror-reflection symmetry [58–60].  
Apart from these topological phases in non-interacting sys-
tems where spin–orbit couplings play essential roles, the  
topologically nontrivial phases are also predicted in systems 
with strong correlations. Although the theoretically predicted 
topological Mott insulator [61] of half-filling honeycomb 
lattice is later proved to be unlikely [62, 63], the strong 
Coulomb-interaction driven topologically nontrivial phases 
have been widely investigated in Kondo insulators [64, 65], 
Kagomé-lattice systems [10], and bilayer graphene [66–69]. 
Moreover, in fractionally-filled flat bands of some lattices, the 
strong electron-electron interaction could also induce frac-
tional topological nontrivial phases in the absence of magnetic 
field [70–74]. When the strong interaction is invoked, these 
2D systems are difficult to study in an analytical manner. 
However, the artificial lattice composed of weakly coupled 
one-dimensional wires [75–77], which can be treated as 1D 
Luttinger liquid by bosonization [75, 76], provides an alter-
native platform to investigate various integer and fractional 
topological phases, e.g. QHE [75–79], QAHE [80], TI [81, 
82], and topological superconductor [83]. Although these 
works are interesting, they are beyond the scope of the present 
review since we focus on the non-interacting particles in 2D 
systems without time dependent potentials.

There are several excellent reviews related to the topics 
mentioned above, such as the anomalous Hall effect [8, 84], 
the Berry-phase effect [85], 2D/3D TIs [36–38, 86, 87], and 
topological crystalline insulator [60]. In this review, we shall 
focus on the recent theoretical progress in studies of the 2D 
topological phases (including Z2 TI, QAHE and QVHE) of 
the noninteracting particles in atomic crystal layers and quasi-
2D quantum wells in the absence of strong magnetic field. 
In section  2, we review the recent work on TIs built from 
atomic layers of the group-IV and -V elements, and quasi-2D 
quant um wells. In section 3, the QAHE is reviewed, begin-
ning with its theoretical prediction and experimental reali-
zation in magnetic TIs, followed by the honeycomb-lattice 
based QAHE. In section 4, we review the QVHE in graphene 
and related systems. The electronic structure and transport 
properties of ZLMs at the interfaces between two QVHE with  
different Chern numbers at each valley are also described.  

Rep. Prog. Phys. 79 (2016) 066501
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In section  5 we give a short discussion and summary. One 
should note that the discussions in below refer to the theor-
etical progresses unless otherwise noted.

2. 2D topological insulators (TIs)

To realize the 2D Z2 TI, two typical proposals are raised inde-
pendently. One, Kane–Mele model in graphene, was to open a 
bulk band gap at the two inequivalent Dirac points [23] as a gen-
eralization of Haldane’s model to spinful system with time rever-
sal symmetry [9]. The other was the Bernevig–Hughes–Zhang 
(BHZ) proposal to induce a band inversion in a 2D semiconduc-
tor [34]. These two models not only pioneer the investigation of 
TIs, but also represent two general routes for realizing 2D TIs, 
i.e. by opening up a band gap in the 2D Dirac semi-metals or by 
inducing a band inversion in narrow-gap semiconductors.

In the following, we briefly describe the basic physical  
origins of these two models and survey recent theoretical sugges-
tions of possible materials that would have large topologically 
nontrivial band gaps and would be experimentally feasible 
with potential practical applications. In sections 2.1 and 2.2, 
the basic physics of the Kane–Mele model is reviewed, and 
then extended to the atomic-crystal layers of group-IV ele-
ments and organic honeycomb-lattice structures. The band 
inversion in the BHZ model is introduced in section  2.3. 
Based on these two basic formations, the theoretical proposals 
to create TIs within various 2D materials, such as graphene, 
atomic crystal layers of group-V elements, group III–V and 
IV–VI compounds, and transition metal dichalcogenides are 
reviewed in sections 2.4–2.7. The topological Anderson insu-
lator as well as the time-reversal symmetry breaking QSHE 
are discussed in sections 2.8 and 2.9. All the possible systems 
to realize 2D TI are listed in table 1.

2.1. The honeycomb lattice and the Haldane model

As mentioned above, the single layer honeycomb-lattice 
structure plays an important role in both 2D TI and QAHE 
systems [9, 23, 24, 46]. Let us first briefly describe the  
π-band electronic structure of a spinless particle in the pla-
nar honeycomb lattice as displayed in figure 1(a), where two 
sets of inequivalent triangular lattices are present, namely 
the AB sublattices labelled by the empty and solid circles, 
respectively. Sublattice symmetry, also known as chiral 
symmetry, occurs when the nearest neighbor hopping t1 
between these two sublattices is present [89]. Therefore, 
only the off-diagonal terms that couple the AB sublat-
tices are nonzero in the tight-binding momentum-space 
Hamiltonian [22]. When the coupling between the sublat-
tices A and B vanishes, accidental degeneracy occurs with 
doubly degenerate zero-energy eigenstates that appear at 
the K and ′K  points, as shown in figure 1(b), where linear 
Dirac dispersions appear [90]. In the long wavelength limit, 
the low-energy continuum model Hamiltonian of the Dirac 
dispersions can be expressed as

( ) ( )τ σ σ= +kH v k k ,z x x y y (1)

where v  =  3t1/2 is the Fermi-velocity, and σ and τ are the 
Pauli matrices for the sublattice and valley pseudospins, 
respectively. For a single valley, the effective Hamiltonian can 
be written as ( ) σ= ∑kH di i i (i  =  x, y, z) with ( )=d d d d, ,x y z  
being the pseudospin texture. The chiral symmetry guarantees 
the vanishing of dz hence the pseudospin texture is in-plane 
as displayed in figure 1(c). Such a gapless linear dispersion 
can only become gapped by introducing a diagonal mass term, 
which breaks the sublattice symmetry.

The simplest way to break the sublattice symmetry is to 
consider a staggered sublattice potential σM z that is momen-
tum independent and opens bulk band gaps at K and ′K  points, 
as can be seen in figure 1(d). The out-of-plane pseudospin tex-
tures near the gapped points, i.e. nonvanishing dz  =  M, leads 
to two merons (see the inset of figure 1(d)), which carry half 
Chern numbers [38, 91–93] that can be calculated by

ˆ ˆ ˆ∫π= − ⋅ ∂ × ∂C d d dk
1

8
d .k k2

2
x y (2)

These two merons carry opposite topological charges, i.e. 
  ( )= − =′C C M0.5 sgnK K , since these two valleys are related 

to each other by the time-reversal symmetry, which guar-
antees the vanishing total Chern number. Alternatively, 
the Chern number carried by different valleys can also be 
obtained by integrating the Berry curvatures in the momentum 
space around the two Dirac points with a more generalized 
definition:

( )∫∑π= ΩC kk
1

2
d ,

n
n

2
 (3)

where Ωn is the z-component Berry curvature of the n-
th occupied band. As a counterpart of the magnetic field 
in real space, the Berry curvature in momentum space is 
defined as ( )Ω = ∇×An n z, where the Berry connection 

( ) ⟨ ( ) ( )⟩= |∇ |A k k ku uin n k n  corresponds to the vector potential 
with ( )⟩| kun  denoting the periodic part of the Bloch function 
of the n-th band . More explicitly, the Berry curvature can be 
further expressed as

( )
⟨ ⟩⟨ ⟩

( )∑ ω ω
Ω = −

| | | |

−≠′

′ ′

′
k

u v u u v u2Im
,n

n n

n x n n y n

n n
2 (4)

where the summation is over all the occupied valence bands  
below the gap, ω ≡ �E /n n , and vx( y ) is the velocity operator.  
In figure 1(d), the profile of the Berry curvature for the gapped 
Dirac cones is plotted in red solid lines . The time-reversal 
symmetry that relates valley K to ′K  requires that the two  
valleys have opposite Berry curvatures, leading to a vanishing 
Chern number. Although the total Chern number is zero, the 
difference between the Chern numbers that stem from the 
Berry curvature localized around ′K K/  valleys is quantized, 
which gives rise to the QVHE as will be discussed in section 4.

On the other hand, a nonzero total Chern number can only 
be obtained if the mass terms at valleys K and ′K  have opposite 
signs, which breaks the time-reversal symmetry. Such a mech-
anism has been proposed by Haldane in an elegant model by 
applying alternating out-of-plane magnetic fields through a 
honeycomb-lattice structure [9]. As displayed in figure 1(a), 
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Table 1. Possible materials for realizing TIs. 1st column, possible materials for realizing TIs based on theoretical proposals. 2nd column, 
the corresponding topological nontrivial band gaps. Here, the phrases ‘dep. strain’ or ‘dep. E’ indicates that the band gap is dependent 
on the external strain or electric field since some materials are not intrinsic TIs but a phase transition to TI is possible by applying strain 
or an electric field. 3rd column: some remarks. 4th column: corresponding references. Last column: the current state of experiments; ‘Y’ 
indicates experimental confirmation, ‘Q’ indicates some experimental discrepancy.

Material Gap Remark Reference Exp.

G ∼μeV [23, 29]
In(Tl)/G ∼7 (21) meV ×4 4 supercell [30]
5d atom/G >0.2 eV [135]
G/Re/SiC(0 0 0 1) ∼100 meV [136]
Ru/G ∼10 meV only ×2 2 supercell [137]
Bi2Se3/G/Bi2Se3 30 meV [139]
Bi2Se3/BLG/Bi2Se3 44 meV [115]
G/BiTeX 70–80 meV Pressure enhancement [140]
Sb2Te3/G/Sb2Te3 1.5 meV [138]
MoTe2/G/MoTe2 3.5 meV [138]
2D triphenyl-Bi 43 meV Intrinsic TI [146]
2D triphenyl-Pb 8.6 meV Orgainic materials
Ni3C12S12 22.7 and 9.5 meV Organic materials, Kagomé lattice, [149] Fabricated
Ni3(C18H12N6)2 16.6 and 22.4 meV two TI gaps both away from Ef [150] Fabricated
s-triazines 5.50 and 8.27 meV Honeycomb lattice with px, y orbitals [151]
δ-graphyne 0.59 meV sp–sp2 hybridization enlarges SOC [152]
LaAuO3 (TMO) 0.15 eV [159]
1T′ TMD 10–100 meV Dirac materials [161]
ZrTe5/HfTe5 0.1 eV in the absence of SOC [163]
Bi(1 1 0) BL 0.1 eV [162] Y
Silicene 1.55 meV External tunability [106]
Germanene 23.9 meV [106]
Stanene 73.5 meV [31]
Dumbbell stanene 40 meV Strain engineering [205]
MLG dep. Rashba and electric field Valley polarized TI [53, 54]
HgTe QW ∼meV [34, 35, 127] Y [35]
InAs/GaSb/AlSb QW [124] Y [125]
GaN/InN/GaN QW ∼10 meV [130]
GaAs/Ge/GaAs QW ∼15 meV [131]
4-layer BP ∼5 meV, dep. E Electric field driven TI [164]
multilayer of BP or Sb (1 1 1) dep. strain/E Extrinsically driven TI [164, 190, 191]
Bi (1 1 1) BL ∼0.2–0.6 eV [170, 173, 174] Q [179, 189]
Bi on Si(1 1 1) 0.8 eV Artificial [180]
Bi/Pb on H-Si(1 1 1) surface >0.5 eV Honeycomb lattice [181]
Fun. germanene dep. strain -H, -F, -Cl, -Br, -CH3 [112, 203]

0.3 eV -I [203]
Fun. stanene ∼0.3 eV -F, -Cl, -Br, -I, -OH [32]
Fun. BL or TL stanene ∼0.244 eV, dep. strain -H, strain driven TI [202]
Fun. Pb BL ∼1 eV -H, -F, -Cl, -Br, -I [203]

0.964 eV CH3 [210]
Fun. Sb (1 1 1) BL 0.41 eV -H [212]

0.32-1.08 eV -H, -F, -Cl, -Br [207–209]
0.386 eV -CH3 [210]

Fun. Bi (1 1 1) BL ∼1.03 eV -H [206, 212]
0.32–1.08 eV -H, -F, -Cl, -Br [207–209]
0.934 eV -CH3 [210]

Fun. GaBi 650 meV -Cl [196]
GaAs, BBi, AlBi monolayer dep. strain Extrinsically driven TI [195]
TlBi 560 meV [195]
TlAs and TlSb 131 and 268 meV [197]
Bi4Br4 0.18 eV Square lattice [198, 199]
Bi4F4 0.69 eV [200]

Note: The term ‘fabricated’ indicates that the hosting materials have been fabricated but the TI phases has yet been experimentally observed since the 
intrinsic Fermi energies do not lie inside the topologically nontrivial band gaps. Abbreviations used: G: graphene; BP: black phorsphorene; BL: bilayer; TL: 
trilayer; Exp.: experiment realization; dep.: dependent on; BLG: bilayer graphene; MLG: multilayer graphene; Fun.: functionalized; QW: quantum wells.
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the magnetic fields of opposite direction are applied in the 
‘a’ and ‘b’ regions, i.e. φ φ= −a b. The zero net magnetic flux 
in a closed path surrounding the unit cell does not affect the 
nearest-neighbor hopping amplitude t1. However, for the next-
nearest-neighbor hopping amplitude t2, the net flux is nonzero, 
and is given by ( )φ π φ φ φ= +2 2 /a b 0 with φ = h e/0 . Thus, t2 
acquires a phase factor to become φt ei

2  [9]. Because this fac-
tor is position-independent, the system also possesses trans-
lational symmetry. The corresponding low-energy continuum 
spinless Hamiltonian can be expressed as [37]:

( ) ( )

( )

( )

†

†

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

τ σ σ σ τσ

π
π

π
π

= + + +

=

+
− +

− −
− − −

kH v k k M m

v

M m
M m

M m
M m

,

z x x y y z z z

 
(5)

where the second and third terms originate from the stag-
gered sublattice potentials and next-nearest-neighbor hop-
ping terms, respectively, with φ= −m t3 3 sin2  and 

( )†π π = ±k kix y. The mass terms at K and ′K  points are modi-
fied to be (M  +  m) and (M  −  m). As a consequence, the Chern 
numbers for valleys ′KK  are changed to   ( )= +C M m0.5 sgnK  
and ( )= −′C m M0.5sgnK . When | | > | |m M , the signs of the 
Merons at valleys K and ′K  are identical and thus = ′C CK K , 

giving rise to the QAHE characterized by a nonzero Chern 
number ( )= + =′C C C msgnK K . This corresponds to a pair 
of chirally propagating edge states along the boundaries as 
displayed in figure 1(e), exhibiting exactly the same transport 
properties as those of the magnetic field induced quantum 
Hall effect, for example, robustness against any kind of weak 
disorder [9, 23].

2.2. Honeycomb lattices of group-IV elements

2.2.1. Graphene: Kane–Mele model. The Haldane model has 
proved to be a great success in advancing the design of dissi-
pationless electronics in the absence of a magnetic field. How-
ever, in the 1980s it was unimaginable that such an ideal toy 
model could be realized in practice. The primary reasons were 
that (i) the 2D materials were believed to be unstable in nature  
[94], and (ii) the alternating magnetic fluxes were extremely 
difficult to impose in experiment. Therefore, for a rather long 
time, very little progress was made following Haldane’s proposal 
until the graphene was successful exfoliated. Graphene is a 
2D atomic crystal layer composed of carbon atoms arranged 
on a honeycomb lattice, making it an excellent test platform. 
Based on the earlier work of DiVincenzo and Mele on the 
spin–orbit coupling of graphite [95], in 2005 Kane and Mele 
in a seminal paper proposed that, in the long wavelength limit, 

Figure 1. (a)–(c) show the real-space lattice structure, electronic structure and pseudospin texture of pristine graphene, respectively.  
(d) Black dashed lines show the band structure of spinless particles in a honeycomb lattice with the staggered sublattice potential denoted 
by σz. The mass term opens a band gap at the ′K K/  points. Inset: pseudospin texture of valence band at K valley, corresponding to a meron.  
Red solid lines denote the Berry curvature profile, which has opposite signs at the ′K K/  valleys. (e) Band structure of Haldane’s model in the 
absence of staggered sublattice potential where the Berry curvatures at the ′K K/  valleys have the same sign. The band gap is topologically 
nontrivial and shows the QAHE with a Chern number =C 1; the corresponding edge state is plotted in the inset. In this model, an 
alternating magnetic flux is applied to the honeycomb lattice. As shown in (a), the whole 2D plane is divided into three regions labeled by 
a, b, and c where the magnetic flux through a and b are of the same magnitude but opposite sign while region c has no magnetic flux. (f ) 
Kane–Mele model: The intrinsic spin–orbit coupling of graphene στ sz z z gives rise to two copies of Haldane’s model with spin-up and -down 
bands of opposite Berry curvature as shown by red and blue solid lines, respectively. The corresponding Chern numbers of 1 and  −1 lead to 
counter-propagating helical edge states shown in the inset. Figure (a) reprinted with permission from [9], copyright 1988 by the American 
Physical Society. Figure (b) reprinted with permission from [22], copyright 2010 by the American Physical Society. Inset of  
figure (d) reprinted with permission from [88], copyright Springer 2012.
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the intrinsic spin–orbit coupling of graphene due to the next-
nearest-neighbor hopping can be written as two copies of the 
Haldane model with the mass terms of the spin-up and spin-
down electrons having opposite signs:

( ) ( )τ σ σ τσ= + +kH v k k m s ,z x x y y z z z (6)

where ( )=s s s s, ,x y z  are the spin-Pauli matrices. For each sin-
gle spin, the time-reversal symmetry is effectively broken and 
the mass term gives rise to a nonzero Chern number according 
to the Haldane model. Specifically, for the spin-up and -down 
bands, the mass terms are respectively m and  −m, leading to 
the Chern numbers ( )=↑C msgn  and ( )= −↓C msgn  corresp-
onding to the counter-propagating edge states of opposite 
spins (see inset of figure 1(f)). This leads to a vanishing charge 
Hall conductance but quantized spin-Hall conductance when 
sz is a good quantum number. Thus, this is called the QSHE. 
The two copies of edge modes with opposite spins are related 
to each other by the Kramers degeneracy theorem since time-
reversal invariance is retrieved by the combination of τ σz z with 
a Zeeman term sz.

Compared with the quantum Hall effect, where the spatial 
separation of counter-propagating edge states protects them 
from any weak disorder induced backscattering, the counter-
propagating edge modes of opposite spins are spatially over-
lapped and thus the backscattering is possible. However, by 
studying the four-terminal transport properties of this system, 
Sheng et al found that the spin-related transport properties are 
rather robust/insensitive to the sample boundary conditions 
(such as zigzag or armchair-type boundaries) and exhibit a 
quantized spin-Hall conductance in the presence of relatively 
large disorder strengths [96]. Moreover, the robust time-rever-
sal symmetry protected edge states are also present even when 
sz is no longer a good quantum number, as with Rashba spin–
orbit coupling [24].

This robustness reveals a most important feature of the 
QSHE, i.e. the elastic backscattering between the two states 
within a Kramers degenerate pair is forbidden due to the pro-
tection from time-reversal symmetry [39]. However, back-
scattering between states in different Kramers degenerate 
pairs is allowed, making them annihilate together. Therefore, 
the system will become a trivial insulator if there is an even 
number of Kramers degenerate pairs at each boundary and the 
topologically nontrivial phase occurs only when the number 
of Kramers degenerate pair is odd, hence the name ‘topologi-
cal insulator’ coined by Kane and Mele [24]. Such a property 
intrinsically classifies the time-reversal symmetric insula-
tors into two classes, characterized by the Z2 topological  
invariant [24]:

∮ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∫π

= ⋅ − Ω
∂

Z k A k kk
1

2
d d mod 2 .z2

HBZ HBZ

2

 

(7)

The presence of the ( )mod 2  term makes the topological invari-
ant can only take two values ‘0’ and ‘1’ indicating topologi-
cally trivial and nontrivial respectively, which reflects the 
binary classification of insulator with even or odd numbers 
of Kramers pairs. In addition, there are other definitions of 
the Z2 topological indices, which have been well described in 

[97] and [98]. For clarity and correctness of the definitions, 
hereinbelow, we refer to the QSHE as a ‘2D Z2 topological 
insulator (2D Z2 TI)’ no matter whether the spin is a good 
quantum number or not.

Although the Kane–Mele model was shown to be able 
to open up a topologically nontrivial gap that can host a 2D 
Z2 TI phase, the intrinsic spin–orbit coupling is extremely 
weak that makes the realization of 2D Z2 TI in the pristine 
graphene impossible [25–29]. Nevertheless, intensive studies 
have shown that the intrinsic spin–orbit coupling of graphene 
can be greatly enhanced via external means, e.g. by adsorbing 
some heavy atoms, and a variety of graphene-like materials 
(e.g. low-buckled honeycomb lattice systems) can naturally 
possess stronger intrinsic spin–orbit couplings as reviewed in 
the following sections.

2.2.2. Low-buckled honeycomb lattice. The Kane–Mele 
model can also be applied to the low-buckled honeycomb-
lattice structures of other group-IV element based 2D atomic 
crystal layers, e.g. silicene [99–102], germanene [99, 103], 
and stanene [32], which are the respective counterparts of 
silicone, germanium, and tin. Similar structures exist in the 
2D alloys of these elements [99, 104, 105]. The low-buckled 
honeycomb structure originates from the larger interatomic 
distances in these systems [31, 106] and makes the atomic 
orbitals mix the sp3 hybridization with the sp2 one, which 
results in a first-order contribution of the atomic spin–orbit 
coupling to the intrinsic spin–orbit coupling of the Bloch elec-
trons (see figure 7(c)). Because of the higher atomic numbers 
of Si, Ge, and Sn, their larger intrinsic spin–orbit coupling 
induced bulk gaps can reach the orders of 1, 10, and 100 meV, 
respectively, making the Z2 TIs measurable under exper-
imentally achievable temperatures [31, 32, 103]. In addition, 
although the low-buckled structure naturally breaks the mirror 
symmetry about the plane leading to an intrinsic Rashba-type 
spin–orbit coupling, this is not detrimental to the 2D Z2 TIs 
since the intrinsic Rashba spin–orbit coupling is momentum-
dependent and vanishes at the Dirac ′K K/  points [31]. Another  
striking property of the low-buckled structure is the exter-
nal tunability when an electric field [107–110] or strain  
[111, 112] is applied.

2.2.3. Multilayer graphene. Although the Bernal-stacked 
multilayer graphene is also a zero-gap semi-metal, the inter-
layer coupling modifies the linear Dirac dispersion at valleys 
′KK  of the monolayer graphene to become non-linear in the 

multilayer case [113]. We begin with bilayer graphene as an 
example that has quadratic bands touching at K and ′K  points 
as displayed in figure  2(a), which gives rise to a different 
pseudospin texture from that of the monolayer graphene of  
figure  2(b) [114]. In the presence of intrinsic spin–orbit  
coupling, even though either top or bottom layer can form a 
separate TI, the interlayer coupling induced combination of 
these two TIs gives rise to a trivial insulator [67, 115]. However, 
it is found that the extrinsic Rashba spin–orbit coupling due to 
the breaking of the mirror reflection symmetry →−z z by, e.g. 
applying a perpendicular electric field [45], adsorbing atoms 
[116], or placing on top of a metallic substrate [116–118], can 
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induce a Z2 TI assisted by the interlayer potential difference 
[53, 119]. Such a TI phase can be understood in two limits as 
described in the following.

When the Rashba spin–orbit coupling λR is much larger 
than the interlayer potential difference U, the low-energy con-
tinuum model Hamiltonian can be expressed as

( )

( )

† †

†

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥λ

λ π π
π λ

λ π
π π λ

=
−

−
− − −

⊥

⊥

H

U v t v

v U

U v

t v v U

1

i 0 2i

i 0 0

0 0 i

2i 0 i

,K
eff

R

R
2 2

2 2
R

R
2 2

2 2
R

 (8)

where the basis functions are mainly decided by { ↑A1 , ↓B1 , ↑A2 , 
↓B2 } [119]. In the absence of a perpendicular electric field, the 

strong Rashba spin–orbit coupling lifts the spin degeneracy of 
the bands in the K and ′K  valleys by mixing the upward and 
downward spins as well as the layer pseudospin. However, the 
gapless character is preserved leading to both linear and qua-
dratic band touching, which can be lifted by either a Zeeman 
term or an inequivalent layer potential resulting in a QAHE 
(see section 3) or TI [119]. The weak inequivalent layer poten-
tial lifts both linear and quadratic band touching and gives rise 
to a Chern number at valley K ( )=C UsgnK , mainly attributed 
to the gapped linear dispersion. The symmetric time-reversal 
counterpart lies in ′K  valley with ( )= −′C UsgnK . As a result, 
the two copies of QAHE possess opposite spin-orientations 
and valley indices, i.e. opposite momenta, corresponding to a 
TI with helical edge states. Different from the TI in monolayer 
graphene where the inversion symmetry and time-reversal 

symmetry guarantee the spin degeneracy of edge states, which 
have dispersion curves crossing the Brillouin zone and hence 
do not have a well-defined valley index, spin degeneracy is 
absent in bilayer graphene due to the breaking of inversion 
symmetry and edge states have a well-defined valley index, as 
can be seen in figure 2(l). As a consequence, these edge states 
are protected not only by the time-reversal symmetry but also 
by their large momentum separation, displaying both TI and 
QVHE characteristics (see also section 4).

On the other hand, in bilayer graphene, chiral symmetry 
also appears with the sublattices separately coming from 
the top and bottom layers. The separate contributions of 
sublattices from different layers makes it possible to induce 
staggered sublattice potentials by applying an external 
perpend icular electric field that can open a band gap, as shown 
in figure 2(c). Different from monolayer graphene where the 
pseudospin texture at each valley gives a half Chern number 
per spin by forming a meron, the quadratic coupling between 
these two sublattices leads to different pseudospin textures for 
gapped bilayer graphene as displayed in figure 2(d), that leads  
to a unit Chern number per spin and hence QVHE with  
gapless edge modes for zigzag nanoribbon (see also section 4). 
Nevertheless, even numbers of Kramers pairs at each bound-
ary from both the spin and valley degeneracies makes this 
phase topologically trivial with =Z 02  [53]. When the Rashba 
spin–orbit coupling is included, the spin-up and -down states 
are mixed to lift the spin degeneracy of the energy bands. The 
increase of λR induces an inversion between the lowest con-
duction and highest valence bands by closing and reopening 

Figure 2. (a) and (c): Electronic structure of Bernal stacked bilayer graphene without and with different layer potentials. (b) and (d): 
Pseudospin texture of bilayer graphene corresponding to (a) and (c). (e)–(h): Bulk band structures along high-symmetry lines for different 
strengthes of Rashba spin–orbit coupling. (i)–(l): Band structure of zigzag bilayer graphene nanoribbon corresponding to figures (e)–(h). 
Figures (a)–(d) reprinted with permission from [114]. Figures (e)–(l) reprinted figure with permission from [53], copyright 2011 by the 
American Physical Society.
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the band gap at the Dirac points, as shown in figures 2(e)–(h). 
During the phase transition, the two-fold spin degenerate 
edge states at each boundary become coupled and split by the 
Rashba spin–orbit coupling. This eliminates two edges states 
at each boundary and keeps only one Kramers degenerate pair 
that is topologically protected by the time-reversal symme-
try as displayed in figures 2(i)–(l). Such a topological phase 
trans ition from a trivial insulator to a Z2 TI can be well inter-
preted by the two-band BHZ model, as will be reviewed in the 
following section [119, 120].

Similar results can be reached for the ABC-stacked trilayer 
graphene [54]. However, different from the bilayer case with 
one pair of states at each valley, there is an unbalanced num-
ber of edge states at the two boundaries of a zigzag-terminated 
nanoribbon. Specifically, there are five pairs of spin-helical 
edge states located at one boundary with three pairs at the 
other boundary. When inter-valley scattering is introduced in 
the armchair ribbon, scattering destroys extra Kramers degen-
erate pairs and leaves only one pair of spin-helical edge states 
in both boundaries. Note that the number of spin-helical pairs 
at any boundary is strictly consistent with the requirement of 
odd pairs of spin-helical edge modes in Z2 TIs [54].

2.3. Band-inversion in quantum wells

Parallel to the idea of TI based on the Dirac semi-metal in gra-
phene-like materials with half-filled π-bands, another route to 
realize 2D Z2 TIs is to utilize a semiconductor with fully-filled 
valence bands [34, 35, 121–125]. Following the realization of 
the 4D generalization of the quantum Hall effect and spurred 
by the requirement of dissipationless spin current [15–19], 
it was suggested to look for the QSHE in zinc-blende semi-
conductors [33]. Soon after, a quantum-well based Z2 TI was 
theoretically proposed in a CdTe/HgTe/CdTe heterostructure 
with proper tuning of the quantum-well thickness [34] that has 
been successfully observed experimentally [35, 126].

For conventional semiconductors composed of light ele-
ments, the filled valence bands are gapped from the conduc-
tion bands as shown in figure  3(b) for CdTe. By contrast, 
for HgTe, an inversion between Γ6 and Γ8 bands makes this 

material a zero-gap semiconductor as displayed in figure 3(a). 
In the symmetric quantum well of CdTe/HgTe/CdTe, a topo-
logically trivial insulating phase occurs for the thin HgTe layer 
because of the dominating contribution from CdTe. When the 
thickness of HgTe increases, a band inversion occurs with 
increasing contribution from HgTe. At the critical point, the 
low-energy continuum model Hamiltonian can be written as

( ) ( )

( )
( )

( )
( )

†
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⎡

⎣

⎢
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⎢

⎤

⎦

⎥
⎥
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⎥

π
π

π
π

= +
−
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∗εkH k

m k A
A m k

m k A

A m k

,eff (9)

where the symmetric mass term is ( ) ( )= − +ε k C D k kx y
2 2  while 

the asymmetric mass term is ( ) ( )= − +m k M B k kx y
2 2 . The two 

decoupled blocks are related by the time-reversal operation 
and hence we only consider the upper-block in our follow-
ing discussion. The ×2 2 effective Hamiltonian be regarded 
as the kinetic energy of a massive Dirac fermion expressed 
in the pseudospin Hilbert space. However, different from the 
previously introduced mass term in graphene, the mass term 
m(k) has a momentum dependence that gives rise to different 
pseudospin textures, depending on the sign of M and B. For 
a positive B, when M is also positive, the mass term m(k) is 
positive around =k 0 but negative for a large momentum. The 
corresponding pseudospin texture is schematically plotted in 
the inset of figure 3(c), representing two merons with opposite 
signs corresponding to a trivial insulator. When M decrease 
to zero, the gapless Dirac dispersion appears as displayed in 
figure 3(d). When M is negative, the band gap reopens and the 
mass term is negative for both the zero and large momenta, 
corresponding to a skyrmion that is composed of two merons 
with the same sign, as displayed in figure 3(e), and carries a 
unit Chern number =C 1. The time-reversal counterpart of this 
block possesses a Chern number of = −C 1. The two decou-
pled blocks therefore result in a vanishing total Chern num-
ber but counter-propagating edge states, forming a Kramers 
degenerate pair corresponding to a Z2 TI [34, 127].

In the symmetric quantum well of CdTe/HgTe/CdTe, by 
neglecting the bulk inversion asymmetry whose effect is small 

Figure 3. (a) and (b): Bulk energy bands of HgTe and CdTe near the Γ point. (c)–(e) Low energy band structure of CdTe/HgTe/CdTe 
quantum well in the normal regime, critical point, and inverted regime, respectively. Each band is double degenerate due to inversion 
symmetry and time reversal symmetry. The inset figures between (c)–(e) show the pseudospin texture of the valence band corresponding to 
the upper panel. Left and right inset figures show two merons of opposite sign indicating the change of Chern number by 1. Figures (a)–(e) 
reprinted figure with permission from [34].
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for HgTe based structure [128], the inversion symmetry is  
preserved, allowing the eigenstates to possess well-defined 
parity. In the trivial insulating regime, the conduction band 
edge has odd parity while the valence edge has even parity [34].  
The inversion symmetry guarantees the occurrence of band 
inversion for the time-reversal symmetric momentum, which 
induces a parity exchange, leading to a TI [34, 98]. For the 
structural inversion asymmetric quantum wells of AlSb/InAs/
GaSb/AlSb, the band inversion can also occur and induce a Z2 
TI phase, as theoretically predicted in [124], and later exper-
imentally realized [121, 122, 125]. However, at the critical 
point of the band inversion, two non-degenerate Dirac cones 
occur at the momenta of k0 and −k0 [129], which is different 
from that in the inversion symmetric system, where the doubly 
degenerate Dirac cones exist around the time-reversal sym-
metric momentum. The case of bilayer graphene is similar to 
the asymmetric quantum well with k0 and −k0 corresponding 
to the K and ′K  points, respectively [53, 119].

In addition to materials with inverted band structure, e.g. 
HgTe and InAs/GaSb heterostructure, band inversion induced 
TIs can also appear in conventional semiconductor com-
posed quantum wells, like GaN/InN/GaN and GaAs/Ge/GaAs 
quantum wells [130, 131]. Due to the sizable band gap of the 
conventional semiconductors, large enough electric field is 
required to reduce the band gap and induce band inversion. 
This large electric field is difficult to achieve via gate tech-
nology but may be realized by fabricating high-quality semi-
conductor heterostructure. For example, in GaN/InN/GaN 
quantum wells, the large strain due to the lattice mismatch 
between InN and GaN can induce sizable electric field via the 
strong piezoelectric effect [130]. Alternatively, in GaAs/Ge/
GaAs quantum wells, the strong electric field appears since 
the charge transfer at As-Ge interface is different from that at 
Ge-Ga interface [131]. Simultaneously, the large electric field 
also enhance the spin–orbit coupling and hence the nontrivial 
band gap of TIs originating from the band inversion.

2.4. Graphene-based experimental prototypes

Although the 2D Z2 TI was first predicted in monolayer gra-
phene, it is regarded as extremely unrealistic since the intrin-
sic spin–orbit coupling in graphene is very minute due to the 
small atomic number of carbon and the distinctive planar hon-
eycomb lattice [25–29]. Specifically, in ideal planar graphene, 
the spin–orbit coupling of the π-band is only about  µ1 eV due 
to the second-order contribution via the virtual trans itions 
to the σ-orbit [26, 29]. Even though this value can be fur-
ther enhanced to about  µ24 eV through virtual transitions to 
d-orbital, the intrinsic spin–orbit coupling is still too weak to 
open an experimentally observable band gap [29]. Therefore, 
one has to turn to external means to tune the intrinsic-type 
spin–orbit coupling. For example, Weeks et al reported that 
the adsorption of indium (In) or thallium (Tl) atoms is able 
to significantly increase the intrinsic spin–orbit coupling [30]. 
To achieve this, several necessary conditions must be satis-
fied: First, the impurity bands should be farther away from the 
Fermi level; Second, the magnetization must not be allowed to 

preserve the time-reversal symmetry; Third, the Rashba spin–
orbit coupling due to the breaking of the mirror reflection 
about the graphene plane from adsorption should be much 
smaller than the enhanced intrinsic-type spin–orbit coupling. 
Although the Rashba term plays a detrimental role, the intrin-
sic spin–orbit coupling induced TI phase can be stabilized as 
long as the Rashba term is not dominant.

As concrete examples for the In and Tl adsorption, the 
energy of the outer p-shell electrons is far away from the 
Dirac point, and their coupling with the graphene’s π-band 
electrons can transmit their strong spin–orbit coupling to gra-
phene via the second-order perturbation. The resulting sizable 
intrinsic spin–orbit coupling opens a bulk band gap of about 
7 (21) meV in the In (Tl) adsorption case [30]. Although this 
numer ical calculation is based on a periodic adsorption that is 
beyond current experimental capabilities, it is shown that even 
when the adatoms are randomly distributed, the enhanced 
spin–orbit coupling from the adsorption is rather stable while 
the inter-valley scattering that is unfavorable for TIs is effec-
tively suppressed [132]. Therefore, these findings indicate a 
high possibility of realizing Z2 TIs in graphene. Yet, exper-
imentally, it has been found that the adatoms are inclined to 
form clusters rather than to distribute individually [133]. But 
surprisingly, Cresti et al reported that even when the adsorbed 
heavy atoms (e.g. Tl) form islands or clusters on top of gra-
phene, a nearly quantized plateau of spin-Hall conductance 
can still be formed [134].

In contrast to the In and Tl with outer p shell, the outer 
d-orbitals of the 5d-transition metal adatoms are not far away 
from the Dirac point of graphene, such as Os, Ir and Re. These  
outer d-orbitals can strongly couple and hybridize with  
graphene π bands, and thus greatly alter the linear Dirac dis-
persion in the high adsorption case [135, 136]. The dominate 
contribution from d-orbitals at the Fermi energy leads to large 
spin–orbit coupling and hence large topologically nontriv-
ial band gap [135, 136]. Similar effect can also be found in  
graphene with Ru adatom in ×2 2 supercell, which is a 
4d-trans ition metal [137]. For these adatoms with outer 
d-orbital, the spontaneous magnetism may be formed due 
to the strong electron-electron correlation, which yet can be  
suppressed by external electric field [135].

Apart from the adsorption of heavy atoms, the proximity 
effect of thin-film insulators with strong spin–orbit couplings 
is another effective method to enhance the spin–orbit coupling 
in graphene [115, 138–143]. The ab initio calculation shows 
that the spin–orbit coupling of graphene can be increased up to 
the order of meV through sandwiching with Sb2Te3 or MoTe2 
slabs, where the two Dirac cones of graphene are folded into 
Γ point due to the ×3 3  superlattice and the inter-valley 
scattering induces a topologically trivial band gap. However, 
the folded Dirac cones are located inside the bulk band gap of 
the neighbor insulators, which can introduce strong spin–orbit 
coupling in graphene to overcomes the trivial band gap and 
results in a topologically nontrivial phase [138]. When the top 
of the valence bands or the bottom of the conduction bands of 
the sandwiching materials is close to the Dirac points of gra-
phene, for example Bi2Se3, the inversion between the bands of 
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sandwiching materials and graphene’s π bands can also result 
in a Z2 TI [139]. Similar effect can be found in bilayer gra-
phene sandwiched by Bi2Se3 [115]. In addition, the van der 
Waals heterostructure between graphene and BiTeX (X  =  Cl, 
Br, and I) chalcogenides can form another family of Z2 TIs 
with a bulk band gap of around 70–80 meV [140].

2.5. Other Dirac materials: organic and artificial lattices, and 
transition-metal compounds

The low-energy physics dominated by linear Dirac dispersion 
is not limited to graphene or other atomic crystal layers of 
group-IV elements [144, 145]. In analogy to silicene, the 2D 
organometallic lattices composed of triphenyl and lead (Pb) or 
bismuth (Bi) naturally form a low-buckled honeycomb lattice 
[146]. For the triphenyl-lead honeycomb lattice, its electronic 
structure proximity to the Fermi energy shows linear Dirac 
dispersion similar to that in silicene. When the spin–orbit cou-
pling is considered, the intrinsic Kane–Mele type spin–orbit 
coupling emerges, opening a bulk band gap and harbouring 
a Z2 TI phase. For the triphenyl-bismuth honeycomb lattice, 
however, although a topologically nontrivial band gap is also 
opened at the Dirac points, the Fermi-level is above the band 
gap since the bismuth atom has one more valence electron 
than the lead atom. Although these materials are theoretically 
shown to be TIs, they still await experimental synthesis. On 
the other hand, recent experimental progress has seen the syn-
thesis of Kagomé organometallic lattices, such as lattices of 
Ni3C12S12 [147] and Ni3(C18H12N6)2 [148]. These two lattices 
also exhibit linear Dirac dispersion at ′K K/  points, which can 
give rise to a TI phase in the presence of spin–orbit coupling. 
However, the topologically nontrivial band gap is much higher 
than the Fermi energy level, making the experimental obser-
vation of TI difficult [149, 150]. In addition to these organo-
metallic lattices, Z2 TI has also been reported in metal-atom 
free systems, e.g. honeycomb lattices of s-triazines [151] and 
δ-graphyne [152], where the linear Dirac dispersions appear at 
the ′K K/  valleys close to the Fermi level.

In addition to the organic honeycomb lattice structures, var-
ious artificial honeycomb lattices can also provide good plat-
forms for Dirac-cone related physics [153]. For example, Dirac 
cones have been theoretically proposed in honeycomb lattices 
of semiconductor nanocrystal [154]. In HgTe nanocrystal, the 
combination of Dirac cones and strong spin–orbit coupling 
leads to a large gap Z2 TI [155]. In recent experiment, Dirac-
dispersion has been reported in honeycomb optical lattices 
with ultracold atoms [156] wherein the Haldane’s model for 
QAHE has been experimentally observed (see section 3.2.6) 
by introducing appropriate Berry curvatures [157]. Through 
combining two copies of QAHE with opposite Chern num-
bers, the formation of the Z2 TI should be possible in such 
kind of systems.

Moreover, the recent experimental progress in fabricating 
heterostructures of transition-metal oxides (TMOs) [158] also 
inspires the investigation of their topological properties [159, 
160]. In the (1 1 1) bilayer structure of perovskite TMOs, two 
triangular lattices of the transition-metal ions at the neighbor-
ing (1 1 1) surfaces form a buckled honeycomb lattice. In these 

structures, the trigonal crystalline field further splits the eg or 
t2g orbitals induced by the octahedral crystal field. These split 
orbitals can then form linear-dispersed Dirac cones, which 
can be gapped by further including the spin–orbit coupling 
to harbour Z2 TIs. Based on the first-principles calculations, 
the LaAuO3 bilayer was predicted to be a Z2 TI with a band 
gap of  ∼0.15 eV [159, 160]. Apart from the lattices with hex-
agonal first Brillouin zone, Dirac dispersions have also been 
reported in systems with a rectangular first Brillouin zone 
where the Dirac points lie on the high symmetric line along 
Γ-X or Γ-Y [161–164]. In 2D transition metal dichalcogenides 
(TMD) with a 1T′ structure [161], two Dirac cones are pre-
sent at Λ points near the Γ point in the absence of spin–orbit 
coupling, as denoted by the black solid lines in figure 4(a) and 
the Λ points labelled by solid red circles in figure 4(b). The 
introduction of the spin–orbit coupling lifts the degeneracy at 
Dirac points and gives rise to a Z2 TI. For the other cases, like 
in Bi(110) bilayer [162], transition-metal pentatelluride [163], 
and 4-layer black phosphorene under an electric field [164], 
although the physical origins of the Dirac cones in the absence 
of spin–orbit coupling are different, the band gaps opened by 
the spin–orbit coupling can host a Z2 TI. The resulting edge 
states of a Bi (1 1 0) bilayer has already been observed exper-
imentally at a temperature of up to  77 K [162].

2.6. Buckled honeycomb lattice of group-V elements

2.6.1. Bismuth bilayer. In addition to the semiconduc-
tor quantum well, real 2D semiconductors with fully filled 
valence bands have also been theoretically reported in the 
atomic crystal layer structure of group-V elements such as 
black and blue phosphorene [165], arsenene [166], and anti-
mony (Sb) and bismuth (Bi) bilayers in the (1 1 1) orientation 
[167–170]. Among these 2D layer structures, black phospho-
rene has a puckered structure while the others have a stable 
buckled honeycomb-lattice structure [165–170]. However, 
in contrast to the honeycomb lattices composed of group-IV 
elements where the π-band from the pz orbital is half-filled 
to form a semi-metallic phase with the Fermi-level lying at 

Figure 4. (a) Band structure and (b) Brillouin zone of 1T′-MoS2. 
(a) Band structures with (red dashed line) and without (black solid 
line) spin–orbit coupling. (B) Four time-reversal invariant momenta 
are marked by black dots and labeled as Γ, X, Y, and R. Red dots: 
the two Dirac points labelled as Λ. Reprinted figure with permission 
from [161].
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the Dirac points, the group-V elements have five valence elec-
trons that fill all the valence bands from the molecular orbitals, 
which leads to the insulating band structure. For these group-
V element based structures, the increase in atomic number 
also decreases the electronegativity that weakens the valence 
bonds, which shrinks the band gap. Moreover, as the atomic 
number increases, the indirect band gaps for blue phospho-
rene [165] and arsenene [166] become the direct gap at the 
Γ point for the Sb and Bi bilayer [169–171]. For example, as 
shown in figure 5(a), the band gap for Bi bilayer is opened up 
at Γ where the valence bands are dominated by px, y orbitals 
with even parity, whereas the conductance bands are domi-
nated by a pz orbital with odd parity [172].

Another result of increasing the atomic number is to 
enhance the spin–orbit coupling of the Bloch electrons [45]. 
As a result, in the Bi bilayer composed of the heaviest group-
V element, the spin–orbit coupling is so strong to induce a 
band inversion between the conduction and valence bands and 
the formation of a TI phase (see figures 5(b) and (c)) [170, 
172–178]. As the layer thickness increases, the corresponding 

band gap decreases due to the inter-layer coupling and the 2D 
Z2 TI phase preserves for systems with layer number N  <  5 
[173].

In the above theoretical studies, all the large-gap 2D Z2 TIs 
were predicted for free-standing systems. However, in reality, 
substrates are a necessity in most situations, which will influ-
ence the intrinsic topological properties of certain materials 
due to interfacial and proximity effects such as the small vari-
ation of lattice constant, unexpected charge transfer and the 
resultant Rashba spin–orbit coupling [179]. Therefore, suit-
able substrates to support room-temperature TIs are important 
for potential device applications [180–184]. The influence of 
several traditional substrates, e.g. hexagonal boron-nitride 
(h-BN) and silicon-carbide [184], has been intensively studied.  
It has been shown that h-BN is an ideal substrate for stabi-
lizing the topologically nontrivial phase of a freestanding Bi 
bilayer.

In experiment, the time-reversal symmetry-protected edge 
states have been observed recently in an exfoliated Bi (1 1 1) 
bilayer [185], and in a Bi bilayer on a substrate, e.g. Bi2Te3 
[186, 187] and Bi2Te2Se [188]. However, for the Bi bilayer on 
a Bi substrate, Takayama et al recently reported their ARPES 
observations seemed to indicate that their one-dimensional 
edge states of a Bi bilayer on a Bi substrate were of a non- 
topological nature [179], which is inconsistent with the  
conclusion from the scanning tunneling microscopy measure-
ments by Drozdov et al [189].

2.6.2. Other group-V elements. Similar to the Bi(1 1 1) 
bilayer, a Sb(1 1 1) bilayer also possesses a buckled hon-
eycomb lattice but it is a robust trivial band insulator in the 
mono layer case due to its weaker spin–orbit coupling. How-
ever, stacking of the Sb(1 1 1) bilayers reduces the band gap 
and a TI phase occurs when the stacking reaches four layers  
[190, 191]. In addition to the buckled structure, as the atomic 
number decreases, a stable puckered structure can also be 
formed due to enhancement of the buckling via reduced 
atom size, for example in black phosphorus [164] and arse-
nene [166]. However, both the buckled and puckered struc-
tures of monolayer arsenide and phosphorus are found to be  
topologically trivial insulators. Nevertheless, in the stacked 
black phosphorus with three to four layers, the external 
perpend icular electric field can drive a topological phase trans-
ition from a trivial insulator into a TI via a band inversion near 
the Γ point [164]. Similar results may be expected for arsenide 
thin films, which to our knowledge has not been reported yet.

2.6.3. III–V, VII–V, and IV–VI compounds. Another direct 
analogy to the low-buckled honeycomb structure of group-IV  
elements is the binary III–V compounds based on the B-In and 
N-Sb elements [192, 193]. However, different from the hon-
eycomb lattice of group-IV elements, the inversion-symmetry 
breaking in these compounds opens a large local band gap at 
the K and ′K  valleys. On the other hand, the conductance and 
valence band edges, which determine the low-energy physics, 
are mainly influenced by the s and px, y orbitals respectively 
for some materials and are located at the Γ point. Although 
the spin–orbit coupling is not strong enough to induce band 

Figure 5. Band structure and corresponding wavefunction parity 
eigenvalues of a single Bi(1 1 1) bilayer (a) without and (b) with 
spin–orbit coupling. Inset of (b): zoom in on two inverted bands at 
Γ. The highest occupied energy level is set to zero. (c) Schematic 
of the evolution from the atomic px, y, z orbitals of atoms into the 
conduction and valence bands of single Bi(1 1 1) bilayer at the Γ 
point. Three stages (I), (II) and (III) take into account the effects 
from chemical bonding, crystal-field splitting and spin–orbit 
coupling, respectively. The green dashed line represents the 
chemical potential. Note that the pz orbitals slightly hybridize with 
the px, y orbitals at stage (III). Reprinted with permission from [172], 
copyright 2014 by the American Physical Society.
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inversion for some materials composed of light elements, the 
buckled honeycomb lattice provides the possibility to tuning 
the topological phase via external means, like strain and elec-
tric field. As an example of As-based III–V compounds, the 
GaAs monolayer has been shown to be a Z2 TI with a band  
gap as wide as 257 meV under certain strain conditions.  
Different from Kane–Mele’s model, the topologically non-
trivial phase is induced by the s-p band inversion via an  
external strain at the Γ point [194].

Later, the binary III–V compound systems were extended 
to the Bi-based family [195]. The Bi based compounds with 
low-buckled structures, i.e. XBi (X  =  Ga, In, Tl), are natural 
Z2 TIs due to the strong spin–orbit coupling. In particular, the 
bulk band gap of TlBi can be as large as 560 meV, which is 
possible for room-temperature measurement of the topologi-
cal phase. For X  =  B and Al, although the intrinsic systems 
are topologically trivial insulators, an externally applied strain 
can drive the systems to be Z2 TIs. Functionalization of the 
binary group III-V systems can further increase the bulk band 
gaps, for instance, chloridization of GaBi can enlarge the top-
ological band gap to 650 meV [196]. Very recently, the III–V 
family has been theoretically extended to include the Tl-based 
compounds g-TlX with X  =  N-Sb, which are found to be 
thermally stable under room-temperature [197]. Topologically 
nontrivial phases due to the band inversion at the Γ point are 
found in TlAs and TlSb [197]. This kind of s-p band inversion 
can also be applied to the group-V based compounds alloyed 
with the group-VII elements, e.g. Bi4Br4 [198, 199] and Bi4F4 
[200], which, however, possess a quasi-cubic lattice structure 
rather than the honeycomb-lattice structure.

2.7. Functionalized honeycomb lattices of group-IV and -V 
elements

2.7.1. Functionalized honeycomb lattices of group-IV ele-
ments. In order to open up a larger bulk band gap and 
increase the tunability of the Z2 topological insulating phase 
in group-IV element based planar or low-buckled honeycomb 
systems, various schemes have been suggested. In addition to 
the heavy-atom adsorption scheme [30], functionalization is 
one of the most efficient approaches to enlarge the bulk band 
gap [32, 103]. This method was first reported by Ma et al by  
considering halogenated germanene [103] and then was  
generalized to stanene (i.e. the tin monolayer) and other hon-
eycomb lattices [32, 196]. Here, we take the stanene (mono-
layer tin) as an example, which is intrinsically a Kane–Mele 
type TI with a topologically nontrivial band gap at the ′K K/  
points, as shown in figure 6(a). The chemical function groups, 
such as -F, -Cl, -Br, -I, and -OH, are strongly coupled with the 
pz orbitals of the stannum atoms and lift the Dirac cones at 
the ′K K/  points by a huge gap, which is the so-called ‘orbital 
filtering effect’.

In contrast, a band inversion can be induced between a 
small gapped s and px, y bands leading to a parity exchange 
between the occupied and unoccupied bands at the time-
reversal point Γ, where a large nontrivial bulk gap of about 
300 meV is opened due to the strong spin–orbit coupling 
[32], as displayed in the lower panel of figure 6(b). Moreover, 

although stanane [201], i.e. the hydrogenized monolayer 
stanene, is a topologically trivial insulator, the hydrogenized 
bilayer and trilayer stanenes are found to be Z2 TIs [202]. This 
kind of functionalization can not only enlarge the bulk band 
gap but also provide extra means to control the edge modes 
between two topologically distinct phases of stanene, e.g. the 
states between fluorinated stanene and stanane. Similar results 
have also been reported for germanene and the 2D counterpart 
of lead [112, 203, 204] as well as the dumbbell stanene [205].

2.7.2. Functionalized honeycomb lattices of group-V elements.  
Similar to the case of group-IV elements, functionalization of 
honeycomb lattice composed of group-V elements is also an 
effective method to induce TIs with large band gaps where the 
orbital-filtering effect also plays a key role. For example, the 
functionalized Bi-bilayers have been intensively studied with 
reports of large nontrivial band gaps for various functional 
groups (such as -H, -F, -Cl, -Br, -I [180, 206–210], and -CH3 
[210]). However, filtering of the pz-orbital has given differ-
ent results. For the group-IV elements the functional groups 
lift the pz-orbital around the ′KK  valleys and induce a band 
inversion at the Γ point, whereas for the group-V elements 
the functional groups couple strongly with the pz-orbital to 
induce a large local gap at the Γ point, and then further flat-
ten the buckled honeycomb-lattice structures [209] to give 
rise to Dirac cones at the ′KK  valleys, which are dominated 
by the px, y-orbitals in the absence of spin–orbit coupling as 
displayed in figure 6(c) [207, 211]. Due to the non-vanishing 
orbital angular momentum of the states at the ′KK  points, the 
intrinsic on-site spin–orbit coupling dominates and produces 
an effective Kane–Mele-type spin–orbit coupling, with a 
strength of the same order as that of the atoms as displayed in 
figure 6(d). As a consequence, the topological band gap of the 
functionalized group-V elements is very large, for instance, 
the gap for the functionalized Bi bilayer can be as large as 

Figure 6. (a) and (b): Electronic structures of stanene and 
functionalized stanene. (c) and (d): Band structure of functionalized 
Bi bilayer without and with spin–orbit coupling, respectively. 
Figures (a)–(b) reprinted with permission from [32], copyright 2013 
by the American Physical Society. Figures (c)–(d) reprinted with 
permission from [209], copyright 2015 Nature Publishing Group.

Rep. Prog. Phys. 79 (2016) 066501



Review

14

1 eV. Figure  7 provides a clear comparison of the different  
origins of the Kane–Mele-type intrinsic spin–orbit coupling 
for the planar honeycomb-lattice structure with the pz-orbital 
(e.g. graphene), the low-buckled honeycomb-lattice structure 
dominated by the pz-orbital (e.g. silicene), and the planar 
honeycomb lattice with px, y-orbitals (e.g. functionalized Bi 
bilayer). Furthermore, the effect of the functional groups -H 
and -F has been extended from a single Bi bilayer film to 1-5 
bilayers of Bi and Sb thin films, where various topological 
phase trans itions have been demonstrated [212].

Such an orbital-filtering effect can also find application 
when the Bi atoms are fabricated on some suitable substrate 
such as a Si(1 1 1) surface covered with halogen or hydro-
gen atoms, where the Bi atoms can self-assemble to form 
a honeycomb-lattice structure with high-kinetic and high- 
thermodynamic stability. Similar to the effect of the function-
alization on Bi bilayers, the coupling between Bi pz-orbital 
and the substrate can also lift the pz-orbital away from the 
Fermi level and generate the linear Dirac cones at the ′KK  
points, where a topologically nontrivial gap can open when 
the spin–orbit coupling is further considered. This is known as 
the ‘substrate-orbital-filtering-effect’ [180–184].

2.8. Topological Anderson insulator

It is known that, for normal 2D metals, the metallic phase is 
unstable and becomes an Anderson insulator under any weak 
disorder. Interestingly, an anomalous finding appears that, 
in HgTe quantum wells, the disorder can drive a topologi-
cal phase transition from a trivial insulator to a topologically 
nontrivial insulator with a quantized spin-Hall conductance 

plateau [213], as illustrated in figures  8(d)–(f ). Numerical 
calculation has shown that the quantized conducting plateau 
arises from the dissipationless edge states in a disordered 
ribbon [214]. Although the transport properties of this phase 
share the same characteristics as those in the Z2 TI, their dis-
connected regions in the phase diagram of figure 8(f) imply 
that this may be a new topological phase different from the 
Z2 TI, and so has been given the name ‘topological Anderson 
insulator’ [213]. Later, this insulating phase was proved to be 
topologically equivalent to the Z2 TI phase of HgTe/CdTe in 
the inverted regime since it can be obtained by continuously 
varying the Dirac mass, Fermi energy, and disorder strength in 
the three dimensional parameter space [215].

The topological phase transition from a trivial insulator to 
a TI is induced by the renormalization of the mass term due 
to the disorder via the quadratic momentum term in the low 
energy continuum model Hamiltonian, which can convert the 
mass term from positive to negative [216–219]. The quantized 
conductance plateau appears when the renormalized chemical 
potential/Fermi level lies in the band edge [216]. Although the 
topological Anderson insulator shares the same topological 
properties as a TI, they are distinct in the bulk. Specifically, in 
a TI, the gapless edge modes live in the bulk band gap where 
no bulk states are present. However, in a topological Anderson 
insulator, localized bulk states may occur in the mobility gap 
where the localized bulk states appear [220, 221]. Moreover, 
it is noteworthy that, when the Fermi-level is located at the 
valence band rather than the conduction band, there is no top-
ological phase transition from the metallic phase to the 2D 
TI phase in both topological trivial and nontrivial phases, as 
shown in figure 8. Such an asymmetry behavior for a Fermi 

Figure 7. Origin of the Kane–Mele type spin orbit coupling. For functionalized Bi bilayer, the on-site spin orbit coupling ⟩ → ⟩| ↑ | ↑A A  
is nonzero since the orbitals are due to ±p ipx y, which has a unit z-direction angular momentum with a sign opposite to that of the B 
sublattice, as shown in (a) and (b). For graphene with a pz dominated orbital, the term is zero since the z-direction angular momentum 
m  =  0, as shown in (d), where the on-site spin mixing mediated intrinsic spin–orbit coupling intensity is on the second order of atomic 
spin–orbit coupling. However, for a low buckled structure, the sp3-like hybridization induces coupling between the pz orbital of the A 
sublattice with the px, y orbital of B sublattice, which mediates the intrinsic spin–orbit coupling on the first order intensity of atomic  
spin–orbit coupling. Reprinted with permission from [207], copyright 2014 by the American Physical Society.
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level lying in the conductance and valence bands arises from 
the particle-hole asymmetry. In a system with particle-hole 
symmetry, the Anderson disorder can induce the localization 
of the bulk states as well as the coexisting edge states, while 
a conductance plateau appears only when the Fermi level lies 
inside the topologically nontrivial band gap [222]. Such an 
Anderson disorder induced topologically nontrivial phase can 
also be extended to a system with modified Dirac Hamiltonian 
by including the quadratic correction [223].

The effect of the hopping disorder has also been studied; 
it was found that the inter-cell hopping term can also lead to 
a topological Anderson insulator [224] while the intra-cell 
hopping cannot [225]. In the presence of Rashba spin–orbit 
coupling, a mediated metallic phase between different topo-
logically trivial and nontrivial insulating phases has been 
theoretically reported [219, 224, 226]. Moreover, it was found 
that the bulk states can be effectively localized by the long-
range disorder, but the edge states are much more robust [222]. 
Furthermore, in contrast to the Anderson disorder without 
spatial correlation, the finite correlation length disorder was  
found to be detrimental to (or even totally suppress) the  
formation of the topological Anderson insulator [227]. The 
presence of several types of disorder, Rashba spin–orbit cou-
pling, the finite-size effect [228, 229] as well as correlation 
make it challenging to observe topological Anderson insulator.

2.9. Time-reversal symmetry breaking quantum spin-Hall 
effect

As long as the time-reversal symmetry is preserved, Z2 is a 
well-defined topological invariant no matter whether the spin 
is a good quantum number or not. For 2D systems with pre-
served mirror symmetry about the plane, sz is a good quantum 

number, leading to well-defined Chern numbers for each spin 
(i.e. ↑C  and ↓C ), which are intimately related to each other by 
the time-reversal operation = −↑ ↓C C . Since the unit Chern 
number for a spin state corresponds to one gapless spin-
polarized chiral edge state, the spin-Chern number defined as 

( )= −↑ ↓C C C /2s  is fundamentally equivalent to Z2. The only 
difference between Z2 and Cs is that the former can only take 
the value of 0 or 1 while the latter can be any integer. When 
the mirror symmetry about the 2D plane is broken, sz is no 
longer a good quantum number and thus the above-mentioned 
spin-Chern number no longer has a valid definition and the 
resulting Cs is no longer exactly quantized. Nevertheless, the 
spin-Chern number can still be meaningful through an alter-
native definition, which is shown to be equivalent to the Z2 
topological order whenever the time-reversal symmetry is pre-
served [97].

However, when time-reversal symmetry breaks down, e.g. 
when the spontaneous anti-ferromagnetic order in a graphene 
nanoribbon is taken into account [230, 231], the QSHE may 
also exist with a well-defined spin-Chern number [232–234]. 
Strictly speaking, this is not a topological phase since the 
Kramers degeneracy of the chiral edge states is lifted, signify-
ing that the edge modes are no longer topologically protected 
from the elastic back-scattering by time-reversal symmetry 
[232]. Although the backscattering is possible, the corresp-
onding edge states can still give rise to a nearly quantized 
spin-Hall conductance and are quite robust against weak 
disorders due to the strong localization at their boundaries. 
Therefore, similar to Z2 TIs, they are still good candidates for 
practical applications [232]. Additionally, time-reversal sym-
metry breaking QSHE have also been reported in monolayer 
graphene [233, 234] and ferromagnetic metals in the presence 
of strong magnetic fields [235–237], but these are beyond the 

Figure 8. Conductance of disordered strips of HgTe/CdTe quantum wells for: (a)–(c) an inverted quantum well with M  =  −10 meV, and 
(d)–(f ) a normal quantum well with M  =1 meV. (a) Conductance G as a function of disorder strength W at three Fermi energy values. 
The error bars show standard deviation of the conductance for 1000 samples. (b) Band structure calculated with the tight-binding model; 
its vertical scale (energy) is the same as in (c), and the horizontal lines correspond to the Fermi energy values of (a). (c) Phase diagram 
showing the conductance G as a function of both disorder strength W and Fermi energy Ef. Figures (d)–(f) are the same as (a)–(c), but 
for M  >  0. The TAI phase regime is labeled. In all figures, the strip width Ly is set to 500 nm; the length Lx is 5000 nm in (a) and (d), and 
2000 nm in (c) and (f). Reprinted with permission from [213], copyright 2009 by the American Physical Society.
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scope of this review since we focus here on the topological 
phases without an applied external magnetic field.

3. Quantum anomalous Hall effect (QAHE)

In the presence of time-reversal symmetry, insulators can be 
classified into Z2 TIs and topologically trivial band insulators 
according to the Z2 topological invariant, as described above. 
In section 1 we saw that for insulators with broken time-rever-
sal symmetry, their topological properties are usually charac-
terized by the first Chern number C [4, 5], which indicates a 
topologically trivial insulator when =C 0, and topologically 
nontrivial quantum Hall effects [3] and QAHE for a nonzero 
integer C [9]. Here, the Chern number is closely related to the 
number of gapless chiral edge modes that emerge inside the 
bulk band gap of a finite-sized ribbon according to the ‘ bulk-
edge correspondence’ [7]. Due to their one-way chiral propa-
gation characteristic, these edge modes are robust against 
nonmagnetic, magnetic, short-range, long-range or any other 
kind of weak disorder [223]. This is inherently superior to the 
spin-helical edge modes in Z2 TIs where backscattering is 
allowed by disorder that break time-reversal symmetry.

After the initial prediction of the QAHE, there was only 
little progress before the year 2004 [11]. However, interest 
has been revived by the successful experiments on TIs and 
2D atomic crystal layers, and in particular by two independ-
ent theoretical proposals in 2010 to realize the effect based 
on magnetic 3D TI thin films [40] and graphene [46]. Even 
though these two schemes employ independent semiconduc-
tor and Dirac semi-metal materials, they are both based on the 
perpendicular ferromagnetic order and spin–orbit coupling 
that were the pioneer ideas involving semiconductor quantum 
wells and atomic crystal layers, as mentioned above in sec-
tions 3.1 and 3.2, respectively. The above proposals based on 
a perpendicular Zeeman field and spin–orbit coupling with 
small Chern numbers can be regarded as the dominating ‘con-
ventional’ QAHE structure. Recently, two new groups have 
been introduced into the ‘conventional’ family, i.e. the hetero-
structure quantum well which will be reviewed in section 3.3 
(heterostructures of ferromagnetic insulator films and other 
insulating thin films with strong spin–orbit coupling), and the 
transition metal oxide to be reviewed in section 3.4. In con-
trast, we shall also describe some ‘unconventional’ proper-
ties of the QAHE, e.g. a large Chern number corresponding to 
large anomalous Hall conductance (section 3.5), a system with 
in-plane ferromagnetism (section 3.6) or anti-ferromagnetic 
order (section 3.7), and quantized Hall conductance produced 
by edge-engineering of a finite size sample (section 3.8).

3.1. Magnetic doping in quantum well-based 2D-TIs  
and 3D-TI thin films

3.1.1. Quantum well-based 2D-TIs. The unique transport 
characteristic of 2D-TIs is the emergence of time-reversal 
symmetry protected spin-helical edge modes propagating 
along each boundary, which is actually a combination of two 
identical QAHE structures with exactly opposite spins. When 

one of the structures is eliminated, the QAHE is obtained. 
The first example was the Mn-doped HgTe quantum well 
[35]. When ferromagnetism is introduced by doping magn-
etic atoms (e.g. Mn), the two-fold Kramers degeneracy of the 
conduction and valence bands is lifted. However, mixing of 
the spin angular momentum and orbital angular momentum 
makes the two QAHE structures respond differently to the 
Zeeman field from the magnetic order, i.e. the band gap of 
one model widens while that of the other closes and reopens 
to undergo a phase transition to become a trivial insulator 
[238]. As a consequence, the QAHE is formed as half of the 
TI, as displayed in figure 9(a). However, it has been shown 
that the ferromagnetic order is not favorable in such a system, 
making it unrealistic experimentally [239]. Within the same 
framework, it was later found that the ferromagnetism can be 
formed in magnetically doped InAs/GaSb quantum wells via 
enhanced Van Vleck paramagnetism from the strong interband 
coupling [239]; this has boosted hopes to realize the QAHE 
in quantum well-based 2D-TIs. Alternative methods have also 
been proposed for magnetically doped 2D-TIs within junction 
quantum wells [123].

3.1.2. 3D-TI thin films. The discovery of 3D Z2 TIs soon moti-
vated the further exploration of QAHE in 3D-TI thin films 
through the establishment of stable ferromagnetism, e.g. by 
doping Cr/Fe-atoms in a Bi2Se3 thin film host material [40]. 
Inspired by this finding, Chang et al finally observed the 
effect for the first time in Cr-doped (Sb, Bi)2Te3 in experiment 
[41]. Subsequently, several other experimental groups inde-
pendently reported observation in the same host material of 
(Sb,Bi)2Te3 but at an extremely low temperature (lower than 
100 mK). Below, we shall briefly describe how the QAHE is 
formed in a magnetic 3D TI thin film.

Let us take Bi2Se3 as an example [36, 38, 40, 240–242]. 
Similar to the 1D gapless edge modes of 2D-TIs, 2D gapless 
surface modes can be generated on the surface of 3D-TI thin 
films, where the spins are locked with the momenta preserving 

Figure 9. Evolution of band structure and edge states upon 
increasing the spin splitting. For (a) GE  <  0 and GH  >  0, the spin 
down states ⟩| −E1,  and ⟩| −H1,  in the same Hamiltonian block 
touch each other and then enter the normal regime. (b) Behaviour 
of the edge states during level crossing in the case of (a). Reprinted 
with permission from [238], copyright 2008 by the American 
Physical Society.
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the time-reversal invariance [36, 38]. Due to this spin-momen-
tum locking, the elastic backscattering is completely suppressed 
when the 3D-TI thin film is thick enough to avoid direct cou-
pling between the top and bottom surface states. When the film 
thickness is decreased, the coupling between top and bottom 
surface states results in a band gap at the Dirac cone of the sur-
face states, forming a 2D insulator [40] as shown in figure 10.

One intriguing property of this bulk 3D-TI is that the 
Bi2Se3 conduction and valence bands of arise from the bond-
ing and anti-bonding p orbitals, which is different from 
ordinary semiconductors where the contributions to the con-
duction and valence bands come mainly from the s and p 
orbitals, respectively. This feature greatly enhances the spin 
susceptibility via the Van Vleck paramagnetism. Moreover, 
the strong spin–orbit coupling induced band inversion further 
strengthens the spin susceptibility in an anisotropic manner 
[40, 243]. As a result, the magnetic doping prefers to form a 
spontaneous ferromagnetic order, aligning along the off-plane 
direction [40]. Once the ferromagnetic order is established, 
the ferromagnetism splits the spin-degenerate and insulat-
ing bands from the coupled top and bottom surface states in 
the 3D-TI thin films. When band inversion occurs due to the 
spin splitting, the spin–orbit coupling reopens a band gap to 
induce a topological phase transition from a trivial insulator 
to quant um anomalous Hall insulator with a Chern number of 
=C 1 [40] (see figure 10). Such a delicate and precise theor-

etical prediction was later experimentally realized in Cr-doped 
(Bi,Sb)2Te3 [41–43, 244–246] and V-doped (Bi,Sb)2Te3 [44]. 
There are also similar proposals for other 3D-TI thin films, 
e.g. Cr-doped TlBiTe2 and TlBiSe2 films [247]. In addition, 
a similar band inversion can also be formed in magnetically-
doped 2D topological crystalline insulator thin films [60], 
where the spin–orbit coupling induced band gap carries a 
Chern number of =C 2 rather than =C 1 [248–250].

Despite the fact that QAHE was experimentally observed 
in Cr- or V-doped (Bi,Sb)2Te3, all these experiments were per-
formed only at extremely low temperatures, which would still 
prohibit potential applications of this fundamental quant um 
transport phenomenon. To realize the high-temperature 
QAHE, a charge compensated n–p codoping method is theor-
etically proposed [251]. The first-principles’ calculations 
show that the thin film band gap of V–I codoped Sb2Te3 can 
reach as large as 84 meV at very low codoping concentration. 
At the same time, the resulting ferromagnetic Curie temper-
ature is estimated to be at a lower bound of 50 K, which is 
also the lower bound of the QAHE observation temperature. 
This is about three orders of magnitude higher than the typical 
temperatures experimentally reported so far.

3.2. Graphene and other honeycomb-lattice materials

3.2.1. Monolayer graphene. As mentioned in section  2.1 
above, the band crossover of graphene, i.e. the linearly dis-
persed Dirac points K and ′K  shown in figure  11(a), origi-
nates from the sublattice/chiral symmetry. Therefore, in order 
to open a band gap at the Dirac points, this symmetry must 
be broken, for example by applying staggered AB sublattice 
potentials [52] or by incorporating the intrinsic spin–orbit 

coupling from spin-dependent next-nearest neighbor hopping 
[23]. However, the extrinsic Rashba spin–orbit coupling from 
spin-dependent nearest-neighbor hopping does not break the 
chiral symmetry but instead induces spin-mixing and lifts  
the four-fold degeneracy at the Dirac points. We see in  
figure 11(c) that the spin-degenerate linear dispersions around 
K and ′K  become quadratic band crossings where the up and 
down spins become mixed, which allows the band gap to open 
by applying a perpendicular Zeeman field, as shown in fig-
ure 11(d). Such a picture is closely related to the chirality of 
graphene’s band structure. Various topologically nontrivial 
phases, such as Z2 TIs [23], QVHE [52] and QAHE [46], can 
be produced by breaking the sublattice/chiral symmetry.

On the other hand, graphene can also be regarded as a zero-
gap semiconductor. When a perpendicular Zeeman field is 
applied, spin-splitting occurs to form crossing points between 
the spin-up and spin-down bands with the spin being a good  
quantum number (see figure 11(b)). The accidental degeneracy 
at the crossing points can be easily lifted by spin-mixing 
perturbation, e.g. Rashba spin–orbit coupling, as shown in  
figure 11(d) [46, 252]. Different from the understanding based 
on chiral symmetry, such a simple physical picture can be 
generally extended to other (quasi-)2D zero-gap or narrow-
gap semiconductors, where a sufficiently large Zeeman field 
is required to induce crossing between the spin-up and -down 
bands by overcoming the bulk band gap. Moreover, the spin-
mixing spin–orbit coupling is not merely limited to the Rashba 
type,for example, spin–orbit coupling in Bi2Se3 thin film may 
also result from bulk inversion-asymmetry [40].

In brief, the above explanation of graphene-based QA 
Hall effects from two distinct viewpoints can be regarded as 
two different limits since the effect is a joint consequence of 
the Rashba spin–orbit coupling and Zeeman field influence 
[253]. The first one corresponds to the large Rashba spin–orbit 

Figure 10. Evolution of the subband structure upon increasing the 
exchange field. Solid (dashed) lines denote the subbands that have 
even (odd) parity at the G point. The blue (red) color denotes the 
spin down (up) electrons. (A) The initial subbands are not inverted. 
When the exchange field is strong enough, a pair of inverted 
subbands appears (red dashed line and blue solid line). (B) The 
initial subbands are already inverted. The exchange field causes 
band inversion in one pair of subbands (red solid line and blue 
dashed line) and increases the inversion in the other pair (red dashed 
line and blue solid line). Reprinted with permission from [40].
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coupling limit, where the four-band low-energy continuum 
model Hamiltonian at the K or ′K  valley is effectively reduced 
to a two-band extended Haldane model (the detailed formula 
are presented in [253]). The second corresponds to the large 
Zeeman field limit, where the QA Hall effect can be regarded 
as a consequence of the topological charges carried by skyrmi-
ons from the real-spin textures and merons from the AB sub-
lattice pseudospin textures [253]. Since the merons from the 
lower two valence bands cancel each other, each valley carries 
a skyrmion and thus the total Chern number is =C 2, with 
equivalent contributions from both valleys, i.e. = =′C C 1K K . 
The equivalent contributions can be further understood from 
the Berry curvature, which is an analogy of the magnetic field 
in momentum space, as illustrated in figure  12 where the 
Berry curvatures are peaked at the corners of the first Brilloin 
zone and have the same signs at the inequivalent valleys with 

( ) ( )Ω = Ω −k k . In analogy to the formation of the QAHE in 
graphene with Dirac dispersion, similar proposals employing 
the joint effect of the Zeeman field and Rashba spin–orbit cou-
pling have also been presented for Kagomé [254], checker-
board [255], star [256], and square lattices [257].

3.2.2. Experimental graphene-based QAHE prototypes. It 
is noteworthy that both ferromagnetism and Rashba spin–
orbit coupling do not exist in pristine graphene. Therefore, 
external means are required to induce these two effects. The 
most effective way is to adsorb magnetic 3d transition-metal 
atoms on one side of a graphene sheet [47, 258]. For example, 
due to the magnetic proximity effect, graphene can be easily 
magnetized by the magnetic adatoms. Moreover, the charge 

transfer between graphene and the adatoms induces a charge 
redistribution in a very short distance (around 1.5 Å) , which 
can generate a considerable electric field and result in a size-
able Rashba spin–orbit coupling by breaking the mirror sym-
metry about the graphene plane. In addition to 3d-adatoms, it 
is found that some 4d- and 5d-transition metal adatoms can 
also form ferromagnetic orders in graphene superlattices, e.g. 
Ru and W adatoms [48, 137, 259]. In particular, for graphene 
with Ru adatoms, the QAHE with different Chern numbers 
can be obtained by adsorbing atoms in different supercells 
[137, 259].

One of the important factors that may negatively influ-
ence the realization of QAHE is the possible existence of 
inter-valley scattering in ×3 3 or ×3 3  graphene super-
cells that couplesthe K and ′K  valleys by folding them into 
the Γ point, which can open a sizeable trivial band gap in the 
hollow-adsorption case [253], or form a quadratic band cross-
over in the top-adsorption case [260]. In [132], Jiang et al 
employed a finite-size scaling method to show that the inter-
valley coupling vanishes in a real sample with the adatoms 
being distributed in a completely random manner. Figure 13 
displays the two-terminal averaged conductance as a func-
tion of the Fermi level in the presence of periodic-adsorption 
(i.e. one hollow-site adsorption in a ×3 3 graphene supercell) 
and random adsorption with the same adsorption coverage, 
where the QAHE competes with the inter-valley scatter-
ing. We can see that in the periodic case there is an energy 
range with zero conductance ⟨ ⟩ =G 0, which corresponds to 
a trivial band gap (see figure 13(a)), while when the adatoms 
become randomly distributed, a plateau of ⟨ ⟩ =G e h2 /2  with-
out fluctuation appears, indicating the formation of a QAHE 
band gap (see figure 13(b)). This suggests that in a realistic 
sample with totally random distribution of the adatoms the 
inter-valley coupling will become vanishing but the real-spin 

Figure 11. Evolution of band structures of bulk graphene along the 
profile of ky  =  0; arrows represent the spin directions. (a) Pristine 
graphene: spin-up and spin-down states are degenerate; (b) When 
only a Zeeman field is applied, the spin-up/spin-down bands are 
upward/downward lifted with the four bands crossing near the K 
and ′K  points; (c) When only Rashba spin–orbit coupling is present, 
the spin-up and -down states are mixed around the band crossing 
points; (d) When both Zeeman field and Rashba spin–orbit coupling 
are present, a bulk gap is opened and all four bands become  
non-degenerate. Reprinted with permission from [46], copyright 
2010 by the American Physical Society.

Figure 12. (a) Berry curvature distribution Ω (in units of e2/h) of 
the valence bands in momentum space. The first Brillouin zone 
is outlined by the dashed lines, and two inequivalent valleys are 
labeled as K and ′K . (b) Profile of Berry curvature distribution along 
ky  =  0. Reprinted with permission from [46], copyright 2010 by the 
American Physical Society.
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related effects (e.g. magnetism and spin–orbit coupling) are 
not affected [132].

It therefore seems that the QAHE should be easily realiza-
ble in graphene by randomly adsorbing some magnetic atoms. 
However, both later experiments and theories found that the 
adatoms in graphene cannot stabilize a dilute distribution but 
prefer to form clusters [258, 261], which is detrimental for 
QAHE generation. Within the same physical scheme, another 
promising method is to consider proximity-coupling with a 
ferromagnetic insulating substrate. For example, in [49], gra-
phene is coupled with the (1 1 1)-ferromagnetic plane of the 
anti-ferromagnetic insulator BiFeO3, which is shown to be 
able to open a band gap larger than 1 meV. Such a limited 
band gap originates from the extremely weak Rashba spin–
orbit coupling since the van der Waals interaction between 
graphene and the substrate is weak due to their large separa-
tion of about 3 Å. Thus the band gap can be further enlarged by 
applying an external stress to a certain degree. Another similar 
theoretical proposal is to place graphene on top of the (0 0 1)  
surface of RbMnCl3, with a band gap in the order of  
1–10 meV [262]. It is noticeable that, although so far the 
QAHE has not yet been experimentally observed in gra-
phene, considerable progress has been made, i.e. intrinsic 
ferromagnetism has been measured in graphene placed on 
top of LaMnO3, and a large anomalous Hall conductance of 
σ ∼ e h0.2 /xy

2  has been reported in a ferromagnetic insulating 
YIG thin film [50], which is rather close to the final quantiza-
tion observation because a finite Hall conductance only exists 
in a much narrower energy range [49].

From the above analysis, it is reasonable to expect that, to 
realize the QAHE in graphene at a higher temperature (e.g. 
by engineering a large band gap), the most effective approach 
is still to dope magnetic atoms but not to use magnetic insu-
lators. Fortunately, it has been shown that compensated n-p 
codoping can be used to form long-range ferromagnetism in 
graphene by simultaneously codoping Ni and B atoms [263]. 
This provides a valuable and practical route via magnetic dop-
ing. Moreover, ferromagnetic order can also be induced in 

nano-meshed graphene, where the pxy orbitals dominate the 
conducting electrons [264].

3.2.3. Low-buckled honeycomb-lattice systems of group-IV 
elements. The formation mechanism of the QAHE from the 
Zeeman field and Rashba spin–orbit coupling in graphene can 
also be applied to low-buckled honeycomb lattice systems, for 
example silicene, which is a single layer of silicon. The major 
difference between low-buckled systems and planar gra-
phene is the generation of an intrinsic Rashba-type spin–orbit 
coupling which makes the extrinsic Rashba unnecessary for 
generating the QAHE. Since the intrinsic Rashba spin–orbit 
coupling is momentum-dependent and vanishes at the Dirac 
points K and ′K , compared with the linearly dispersed edge 
states in graphene the nearly flat-band edge states are present 
in the absence of any extrinsic Rashba effect [265].

Although both the intrinsic and the extrinsic Rashba spin–
orbit couplings can give rise to the QAHE with a Chern 
number of =C 2 in the presence of a Zeeman field, their 
competition results in a new topological phase, i.e. a valley-
polarized QAHE phase with a Chern number of =C 1 that 
originates from only one valley [266]. This can be understood 
as an intermediate topological phase that occurs between the 
transition from the intrinsic to the extrinsic Rashba spin–orbit 
coupling induced QAHE phases [266, 267]. Similar effects 
have also been proposed for bilayer silicene [267]. It is nota-
ble that the low-buckled structure or the top-bottom degree of 
freedom makes it possible to tune the band structure through 
applying an external electric field to induce a rich range of 
topological phases [265, 267]. Although the Rashba spin–
orbit coupling intrinsically exists in low-buckled systems, the 
Zeeman field has to be induced by some external means, such 
as 3d and 4d magnetic atom decoration [268–271]. Another 
most interesting topological phase is the QSHE-QAHE, 
wherein the chiral edge states are present in one valley while 
the spin-helical edge states appear in another valley through 
introduction of the sublattice-dependent Zeeman field [348].

3.2.4. Buckled honeycomb-lattice system of group-V ele-
ments. Different from the Dirac semi-metal honeycomb  
lattices composed of group IV elements where the low-energy 
physics is determined by the half-filled π band Dirac disper-
sions, in a honeycomb lattice Bi(1 1 1) bilayer the fully filled 
valence bands create an insulator where the pz-dominated 
conduction band and the pxy-dominated valence band edges  
possess odd and even parities, respectively, at the Γ point [172].  
The strong spin–orbit coupling can then induce inversion 
between the bands of opposite parities, and so generate a Z2 
TI. When a small Zeeman field is introduced, a time-reversal 
symmetry breaking QS Hall effect results, characterized by a 
quantized spin-Chern number and spin-polarized edge states. 
Moreover, the presence of the Zeeman field also lifts the spin 
degeneracy of both the conduction and valence bands, shrink-
ing the topological band gap.

When the Zeeman field is further increased, the band gap 
gradually closes and reopens, leading to a topological phase 
transition from a time-reversal symmetry breaking QSHE to 
one with a Chern number of = −C 2, where M is the Zeeman 

Figure 13. Conductances G of a two-terminal setup in the presence 
of periodically and randomly distributed adatoms as a function of 
Fermi level εF. Green solid line with solid circles: the case with 
periodic adsorption where an insulating regime occurs. Dashed 
black line with hollow triangles: the case of randomly distributed 
adatoms where the conductance shows a quantized plateau in some 
regime. Reprinted with permission from [132], copyright 2012 by 
the American Physical Society.
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field [272, 273]. This is different from the band inversion 
induced effect with a Chern number of ( )=C Msgn  from an 
ordinary insulator [40, 273]. The strong spin–orbit coupling 
plays a crucial role in driving the topological phase transition, 
i.e. the system evolves from a QAHE phase with a Chern num-
ber of =C 1 to one with = −C 2 mediated by a metallic phase 
with the lowest filled bands contributing a Chern number of 
=C 2 [273]. So far, although the density-functional calcul ation 

has confirmed the existence of such a topological phase trans-
ition, the underlying reason why a single band inversion can 
induce various Chern numbers is still an open issue.

3.2.5. Half-functionalized honeycomb-lattice systems of group-IV  
and -V elements. In addition to doping magnetic atoms, 
spontaneous ferromagnetic order can also be induced by func-
tionalization [274, 275]. Let us first take stanene as an exam-
ple. Different from the full functionalization that can result 
in a large gap TI in stanene, the half-I-passivated stanene can 
establish a spontaneous ferromagnetic order due to the dan-
gling bonds at one side [275]. Interestingly, because of the 
coupling between the functional group and the pz-orbital of 
the tin atoms, the graphene-like Dirac bands at the K and ′K  
points are pushed to high energy, whereas the s-p-hybridized 
bands at the Γ point become low-energy bands. In the absence 
of spin–orbit coupling, the ferromagnetism leads to asym-
metry between the spin-up and -down bands, where the s-pxy 
band inversion for the spin-up bands disappears while that 
for the spin-down bands appears. Therefore, when the spin–
orbit coupling is included, it only opens a gap between the 
spin-down bands at the Γ point, which forms a QAHE phase 
with a Chern number of =C 1. It has been reported that the 
strong spin–orbit coupling can open a large band gap of about 
340 meV, which is a good candidate for the realization of a 
room-temperature QAHE structure [275]. Similar results have 
alsobeen proposed for half-I-passivated germanene yet with 
a much smaller band gap of about 60 meV [275]. This kind 
of half functionalization at one side is geometrically equiva-
lent to the case with stanene being placed on top of certain  
substrates, such as CdTe and InSb (1 1 1) surface [275].  
In fractional functionalized silicene and germanene, QA Hall 
effects with a Chern number of = −C 1 or 2 have also been  
predicted [274].

Similar to stanene, although the fully functionalized Bi(1 1 1)  
bilayer is shown to be a Z2 TI, the time-reversal symmetry is 
broken due to the formation of a spontaneous ferromagnetic 
order in the half-hydrogenated Bi(1 1 1) bilayer [206, 276] 
or Bi(HN) bilayer, with one side being hydrogenated and the 
other side decorated by nitrogen atoms [209]. The induced 
ferromagnetism together with the strong spin–orbit coupling 
gives rise to a large gap QAHE with a Chern number of =C 1, 
which originates from the inversion symmetry breaking, giv-
ing different responses at the K and ′K  valleys. As a conse-
quence, band inversion occurs only at one valley to produce a 
valley-polarized QAHE [206, 209, 276].

3.2.6. Artificial honeycomb-lattice systems. The recent 
development of artificial lattices in optical lattice with ultra-
cold atoms, photonic crystals, phononic crystals and so forth 

provides alternative platforms to study topological phases in 
media besides condensed matter [153]. Through introducing 
Berry curvature that resembles the alternating magnetic field 
[277], Haldane’s model is theoretically shown to be realizable 
in honeycomb optical lattices with s-orbital [278]. Alternative 
methods to realize QAHE have been theoretically proposed in 
honeycomb optical lattice of ultracold atoms with px, y orbitals 
[279] and square lattices [280]. Experimentally, the honey-
comb optical lattice has been created possessing tunable Dirac 
points. This provides an ideal platform to study various types 
of topological phases [156] as well as systems with strong 
interactions [281–283]. By introducing appropriate Berry cur-
vature via applying a constant force to the atoms in such a 
honeycomb lattice, the QAHE based on Haldane’s model has 
been experimentally realized in two years [157]. By combin-
ing two copies of QAHE, the realization of the Z2 TI is pos-
sible in the artificial honeycomb lattice systems constructed 
by cold atoms [284, 285].

In addition to the s- and p-orbital-dominated bands, a 
d-orbital based QAHE has been predicted in an artificial 
structure composed of heavy transition metal atoms, e.g. W 
grown in a 1/3 monolayer of halogen-Si(1 1 1) that consti-
tute a honeycomb lattice structure. The splitting of the s- and 
d-orbitals of W atoms due to the crystal field results in a spon-
taneous ferromagnetic order. This ferromagnetism and the 
strong spin–orbit coupling of the heavy metal atoms combine 
together to open up a large band gap of about 100 meV to cre-
ate a QAHE structure with a Chern number of = −C 1. Such a 
complex structure is expected to be achievable based on cur-
rent state-of-the-art technology [286].

In addition to the above inorganic materials, honeycomb 
lattices can also be artificially constructed by using organic 
molecules (e.g. triphenyl) and magnetic Mn atoms in a spe-
cific manner, which is theoretically shown to be able to real-
ize the Kane–Mele QSHE when the time-reversal symmetry 
is preserved [287]. The magnetic Mn atoms can induce an 
extremely large intrinsic ferromagnetism, which can com-
pletely separate the spin-up and -down bands. In contrast to 
the Rashba spin–orbit coupling induced gap at the crossing 
points of the spin-up and spin-down bands, the intrinsic spin–
orbit coupling of the planar artificial honeycomb lattice gives 
rise to a fully spin-polarized QAHE system (or ‘half’ Kane–
Mele type TI).

3.3. Heterostructure quantum wells

Since the intrinsic ferromagnetism and spin–orbit coupling 
are two essential ingredients for realizing the QAHE, another 
possible route is to directly include these two factors in a 
heterostructure composed of a heavy atom insulator and a  
ferromagnetic insulator. For example, Garrity and Vanderbilt 
proposed doping heavy metal atoms in magnetically ordered 
MnTe, MnSe, or EuS surfaces [288]. When the bands of the 
heavy atomic layer exhibit a gap that is located inside the large 
band gap of the magnetic insulator, the QAHE can in principle 
appear. Following this recipe, they predicted several such sys-
tems with large band gaps or large Chern numbers up to =C 3 
by employing first-principles calculations. However, in these 
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systems the requirement of periodic adsorption is currently 
beyond possibility of experimental realization.

Similarly, a heterostructure quantum well composed of 
CdO/EuO (both oxides have the rocksalt structure) provides 
another potential platform to realize QAHE. Here, EuO is a 
ferromagnetic semiconductor with a valence band mainly pro-
duced by the spin-polarized f-orbital of Eu while the conduc-
tion band is dominated by the s-orbital of Cd. In the presence 
of a suitable in-plane strain or an out-of-plane electric field, 
the strong spin–orbit coupling may lead to a band inversion 
between the conduction band of even parity and the valence 
band of odd parity, which can open up a bulk band gap to host 
the QAHE [289]. It is noteworthy that the time-reversal sym-
metry is broken by the spontaneous ferromagnetic order of 
EuO but not the magnetic doping that is used in InAs/GaSb 
quantum wells or 3D-TI thin films.

Comparable to the oxide heterostructure, a bilayer sys-
tem composed of GdN and EuO (both topologically trivial 
ferromagnetic insulators) provides another possible scheme 
to realize the QAHE. The strong spin–orbit coupling of Gd 
and the spin-polarized conduction band minima from the 
d-orbital as well as the smaller lattice mismatch make this 
system a good candidate for the QAHE with a large band 
gap. Moreover, a bilayer of ferromagnetic insulators such as 
Cr-doped (Bi,Sb)2Te3 and GdI2 has proved to be another pos-
sible candidate [290]. In addition to the magnetic doping, the 
ferromagnetism can also be engineered through the proximity 
effect with the magnetic substrates [291].

Additionally, another route is to start from the 3D Chern 
semi-metals, where the gapless dispersion at the Fermi point 
is determined by the band inversion from the spin–orbit cou-
pling, as in CdO/EuO superlattices [289] and HgCr2Se4 [292]. 
In its corresponding thin film form, the characteristics of both 
the ferromagnetism and the spin–orbit coupling induced band 
inversion will still persist to harbour the QAHE. Interestingly, 
tuning the thickness may be an efficient way to produce a 
large Chern number (see section 3.5).

3.4. Transition metal oxides

So far, although the ferromagnetic order relies mainly on the 
presence of transition metal atoms, the host materials are based 
on the group-III, -IV, -V, and -VI elements or compounds with 
negligible electron-electron correlations. Recently, the search 
for topological materials, in part stimulated by experimental 
progress [293], has begun to target the transition metal oxides 
where the electron-electron correlation and strong spin–orbit 
coupling (especially the 5d transition metal atoms with large 
atomic number) have led to some interesting discoveries 
[294–296]. Based on iridium oxide, two theoretical predic-
tions of the QAHE in (SrIr/TiO3)n with n  =  1 or 2 [295] and 
the monolayer La2MnIrO6 [296] have been reported. Different 
from the honeycomb lattices of graphene-like materials, these 
thin films possess square lattices, i.e. orthorhombic [295] or 
double perovskite [296] structures where the t2g-orbitals dom-
inate the low-energy physics around the Fermi level due to the 
crystal fields. In the orthorhombic case, the strong spin–orbit 

coupling splits the t2g-orbitals into =J 1/2eff  and =J 3/2eff , 
where the spin is already combined with the orbital motions. 
In the case of a single IO2 layer with n  =  1, the specific glide 
symmetry leads to the Dirac dispersion at the X and Y points 
in the Brillouin zone, which are the two time-reversal invari-
ant momentum points. The TI phase can be formed when an 
external strain is applied to break the glide symmetry and 
open a band gap at the Dirac points. When the Zeeman field 
is further included to close and reopen the band gap at the X 
point without affecting the bands near the Y point, the QAHE 
with a Chern number of =C 1 appears.

Interestingly, in stacked bilayers, the inter-layer coupling 
drives the glide symmetry-protected Dirac cones away from 
the X and Y points. In this case, any kind of magnetism can 
open a band gap to host the QAHE phase with a Chern num-
ber of =C 2 [295]. Different from SrIrO3, the orbitals domi-
nating the low-energy physics in the monolayer La2MnIrO6 
come from the t2g-orbitals of the 3d-Mn atoms, whose inter-
site hopping induced strong spin–orbit coupling opens a gap 
of about 26 meV when the Mn atoms establish a ferromagn-
etic order [296]. Apart from the 5d-atom oxides, the QAHE 
has also been predicted in the oxidation of the 3d-Cr element, 
i.e. CrO2/TiO2, where a smaller band gap of about 3 meV is 
induced due to the weak on-site spin–orbit coupling [297].

3.5. Large-Chern-number QAHE

The Chern numbers of any QAHE systems described in the 
previous sections are mainly limited to =±C 1 and =±C 2. 
Since the conductance in the Landau-level induced quantum 
Hall effect can be modified to have various integer values by 
changing the magnetic field or varying the Fermi levels, the 
possibility to obtain large-tunable large-Chern numbers that 
could provide strong currents and thus strong signals is of 
great interest from both the theoretical and practical aspects 
[298, 299].

In Bernal-stacked bilayer graphene, a Chern number of 
=C 4 is predicted in the presence of the Zeeman field and 

Rashba spin–orbit coupling [119, 300], where each valley 
contributes a Chern number of =C 2. Therefore, larger Chern 
numbers can be expected in Bernal-stacked multi-layer gra-
phene. A large-Chern-number QAHE phase has also been 
reported in the graphene-like system β-graphyne where the 
carbon atom triple bond is inserted into graphene [301]. In 
such a system, the competition between the intrinsic and 
extrinsic Rashba spin–orbit couplings in this specific lattice 
structure allows us to tune the number and position of the 
Dirac cones. When the time-reversal invariance is broken, the 
resulting band structure can exhibit various QAHE phases 
with different Chern numbers ranging from = −C 3 to =C 3 
[301].

Additionally, large Chern numbers have also been pre-
dicted in magnetic 3D-TI thin films beyond the 2D limit [298, 
299]. Within the 2D limit, the QAHE arises from the direct 
coupling between the top and bottom surface states which 
gives rise to the lowest Chern number of =C 1 [40]. When 
the films are thicker, the conduction and valence subbands 
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due to the confinement along the z-direction become involved 
in the band inversion due to the Zeeman field and spin–orbit 
coupling. The Chern number is therefore strongly dependent 
on the relative magnitude of the Zeeman field to the sample  
thickness, which determines the separation between the sub-
bands. As illustrated in figure 14, for different sample thick-
nesses, increasing the Zeeman field can increase the Chern 
number to a rather large integer, which is different from the ordi-
nary quantum Hall effect where increasing the magnetic field 
decreases the Hall conductance [298, 299]. The recent exper-
imental observation of the QAHE in (Cr0.12Bi0.26Sb0.62)2Te3  
samples demonstrates the possibility of realizing such large 
Chern numbers [43]. In these systems, the nearly quanti zed 
Hall conductance was observed in a sample with a thickness 
of over 10 quintuple layers, which is beyond the 2D hybridiza-
tion thickness [43].

3.6. In-plane magnetization induced QAHE

In addition to the out-of-plane Zeeman field, the in-plane 
field can also induce the QAHE [302–304]. In a 2D system, 
the presence of mirror reflection symmetry, i.e. symmetry 
under ( ) → ( )−M x y x y: , ,x , constrains the Hall conductance 
σxy to be zero since this symmetry requires the same current 
along both the x and  −x directions. Different from the out-
of-plane Zeeman field which is a pseudoscalar, i.e. a scalar 
that changes sign under parity inversion and thus breaks any 
in-plane reflection symmetry, the in-plane Zeeman field is a 
pseudovector and does not break all the reflection symme-
tries; for example, the Mx reflection symmetry is preserved 
when the field is applied along the x-direction. Therefore, the 
in-plane field can only induce a QAHE when the remaining 
mirror-reflection symmetry is broken [304], as in a patterned 
2D electron gas with both Rashba and Dresselhaus spin–orbit 
couplings [302], or in magnetically-doped Bi2Te3 thin films 
with further inclusion of trigonal warping [304].

Alternatively, the mirror reflection is partially broken in a 
honeycomb lattice and hence the QAHE is possible based on 
the symmetry analysis if the magnetic field does not orientate 

along the six special directions that preserve the mirror reflec-
tion. However, detailed calculations show that the QAHE can-
not be realized in the planar honeycomb lattice where only the 
Kane–Mele type intrinsic spin–orbit coupling exists. Further 
investigations reveal the importance of intrinsic Rashba spin–
orbit coupling in low-buckled honeycomb lattice of, e.g. 
silicene, where the simultaneous presence of both types of 
spin–orbit couplings can open up a bulk band gap around M 
points that are saddle points with strong anisotropy rather than 
the conventionally focused Dirac points. This bulk band gap is 
topologically nontrivial and hosts QAHE when the spin-split-
ting from in-plane magnetization is strong enough to close the 
band splitting at M points [305]. The low-energy physics of 
this QAHE is theoretically different from the previous ones 
based on isotropic Dirac models [9, 40, 46]. Higher Chern 
number QAHEs are predicted in Bernal-stacked multi-layer 
systems where the out-of-plane electric field can decrease 
the lowest critical magnetization strength required to realize 
QAHE and even induce topological phase transition between 
topological phases with different Chern numbers [305].

On the other hand, in a buckled honeycomb lattice system, 
the in-plane magnetic field may be employed by considering 
only the magnetic flux induced orbital effect, in analogy to 
Haldanes model [306]. As displayed in the upper left diagram 
of figure 15, the in-plane magnetic field can generate a finite 
magnetic flux in the three outer triangles around the hexagon. 
Although the detailed flux configuration is different from that in  
the Haldane model, as displayed in the lower panel of figure 15,  
the total magnetic flux is zero in the whole system and a Chern 
number of =C 1 is induced for the spinless fermion, which is 
the same as that in the Haldane model. In realistic materials 
with a spinful fermion, the Chern number will double if the 
Zeeman splitting and the spin–orbit coupling do not close the 
bulk band gap. Note that, the magnetic flux configuration is 
strongly dependent on the angle of the magnetic field, and a 
topologically trivial phase occurs when this angle is rotated 
through 90 degrees as illustrated in upper right panel of  
figure 15. Therefore, a topological phase transition is easily 
manipulated by changing the direction of the magnetic field, 
which is the second major difference from that in Haldanes 
model.

3.7. QAHE with magnetic texture: antiferromagnetism and 
skyrmion

To engineer QAHE, the breaking of time-reversal invariance 
is crucial and can usually be achieved by introducing the  
ferromagnetic order [40, 46]. Alternatively, the QAHE has 
been theoretically proposed in the system with anti-ferromag-
netism [231] and non-coplanar magnetism, i.e. the skyrmion 
[307–309]. With antiferromagnetic order, the QAHE was 
theoretically predicted in a (1 1 1) perovskite material with 
low-buckled honeycomb lattice structure in the presence of 
a perpendicular electric field [310]. In the low-buckled honey-
comb lattice system, the strong intra-atomic spin–orbit coupling  
is expected to generate a large Kane–Mele-type intrinsic spin–
orbit coupling, giving rise to a QSHE. However, the presence 
of the anti-ferromagnetic order induces a spin-sublattice  

Figure 14. Hall conductance versus Zeeman field m, for sample 
thicknesses of Nz  =  6, 9 and 12. Reprinted with permission from 
[298], copyright 2012 by the American Physical Society.

Rep. Prog. Phys. 79 (2016) 066501



Review

23

dependent site potential and breaks the time-reversal sym-
metry to drive the QSHE into a band insulator. The further 
application of a perpendicular electric field triggers a single 
band inversion at one valley while keeping the gap open at the 
other valley, leading to a valley-polarized QAHE with a Chern 
number =C 1.

Alternative to the system with ferromagnetic or antifer-
romagnetic order, the real-space spin texture of non-coplanar 
magnetism makes the itinerate electrons coupled with the spin 
texture via exchange interaction, obtaining a phase accumu-
lation during its hopping to induce a Berry curvature in the 
momentum space [307–309]. The QAHE has been proposed 
in a 2D electron system that strongly couples with the spin 
texture of a skyrmion crystal structure in the strong exchange 
interaction limit [308] and in graphene proximately coupled 
with a skyrmion lattice in the weak exchange interaction limit 
[309]. Different from the previous proposals of QAHE in gra-
phene, the spin–orbit coupling is unnecessary in the latter case 
[309].

3.8. Edge-state engineering

Although the QAHE is a consequence of the bulk topology 
of band structure, its representative character that is required 
for application is the robust dissipationless chiral edge modes, 
which can also be engineered by simply manipulating a finite-
sized ribbon [311–313]. The most effective approach to engi-
neer the chiral edge modes at the boundaries is to destroy or 
remove half of the spin-helical edge modes of the QSHE, since 
their spin-up and -down states propagate in opposite direc-
tions so the Zeeman field is expected to lift the degeneracy 
between the Kramers pair. Li et al found that when applied 
at the boundary the field can drive states with one spin away 
from the boundary, but the remaining gapless edge states with 
opposite spin are also localized at the boundaries. Therefore, 
only the gapless chiral edge states with a specific spin are 

present, which gives a quantized two-terminal conductance 
as well as the Hall conductance [311]. Such a Zeeman field 
appearing at the edges can be induced from the proximity 
effect with a ferromagnetic insulator. In addition, it is found 
that the hopping amplitude between the topological insulator 
and a normal insulator can also lead to a spatial separation 
between the two copies of the counter-propagating edge states 
carrying opposite spins [313].

4. Quantum valley-Hall effect (QVHE) and topologi-
cal zero-line modes

In this section  we review the the QVHE and other valley-
related topological phases in graphene and graphene-like 
honeycomb lattice systems. Here, we emphasize that although 
the robustness of the QVHE cannot compete with that of the 
QAHE, it is comparable with that of the Z2 TI. For example, 
the formation of the Z2 TI requires the time-reversal invari-
ance, while the existence of QVHE requires the absence of 
inter-valley mixing. The chiral edge modes of the QAHE are 
robust against any kind of impurities, since they are protected 
from backscattering by the large spatial separation between 
two opposite sample boundaries. However, the spin-helical 
edge modes of the Z2 TI are only robust against elastic back-
scattering from nonmagnetic impurities due to the topological 
protection from the time-reversal invariance, while the valley-
helical edge modes of the QVHE are robust against smooth 
impurities due to the topological protection from the large-
momentum separation [53, 54].

Nevertheless, different from the Z2 TIs and QAHE dis-
cussed above, the QVHE or topological 1D ZLMs do not rely 
on quantum manipulation of real-spin related effects such as 
spin–orbit coupling and ferromagnetism, but only require an 
external electric field, which is easily realizable in the lab. 
Therefore, superior to the QAHE that can only be exper-
imentally observed at extremely low temperatures, multilayer 
graphene-based QVHE and topological 1D ZLMs should, in 
principle, be able to bring about a revolutionary development 
in room-temperature low-energy-consumption electronics or 
valleytronics.

4.1. Topological aspect of honeycomb lattice from inversion-
symmetry breaking

In graphene and graphene-like honeycomb-lattice systems, 
one of the most important properties is the structurally-
induced linear Dirac dispersions at two inequivalent valleys 
K and ′K  points, which are closely related to each other by 
the time-reversal symmetry. In the absence of short-range  
scattering, the valleys are decoupled and possess a long valley  
lifetime due to their large-separation in momentum space. 
Therefore, the electron in either specific valley (K or ′K ) effec-
tively breaks the time-reversal symmetry [314], and can give 
rise to a finite magnetic momentum as a consequence of the 
local intrinsic Berry curvature when a bulk band gap is opened 
by breaking the inversion symmetry (see figures 16(b1) and 
(c1)) [52]. The presence of the nontrivial Berry curvature 

Figure 15. Hexagonal unit cells with zero net magnetic flux. The 
upper two unit cells are a buckled honeycomb lattice in an in-plane 
magnetic field. The lower figure is Haldanes unit cell. The direction 
of positive flux accumulation is indicated by the arrows along the 
bonds. For clarity, only the bonds along a single sublattice are 
shown. Reprinted with permission from [306].

Rep. Prog. Phys. 79 (2016) 066501



Review

24

concentrated at valleys K and ′K  has led to many fascinating 
transport properties, e.g. the valley Hall effect where a valley 
current flows along the direction transverse to the applied lon-
gitudinal charge current [52]. In the transition metal dichalco-
genides materials, the inversion-symmetry breaking can also 
induce a large band gap at valleys K and ′K  where the strong 
spin–orbit coupling lifts the spin degeneracy of the bands 
[315]. However, the Kramers degeneracy is preserved due 

to time-reversal symmetry, which relates the spin-up states 
at valley K to a energy-degenerate-spin-down state at valley 
′K . The locking of the spin and valley indices can not only 

result in a combined spin-valley Hall effect in the electron- or 
hole-doped region [315], which has been recently observed 
in experiment [316], but also gives rise to a valley-selective 
photo-excitation of carriers that provides the possibility of 
controlling spin and valley indices via an optical method. This 

Figure 16. Left figure, upper panel (QVHE): the uniform staggered sublattice potential for a monolayer and perpendicular electric field 
for multilayer graphene; the corresponding Berry curvature profiles of the induced QVHE are plotted in the third column ci, with i  =  1–5 
indicating the layer number. The Chern number for a single valley is 0.5i (i  =  1–5) per spin as labeled by ′CK K, . The electronic structures 
of the armchair and zigzag ribbons are plotted in the first and second columns, labeled by ai and bi (i  =  1–5), respectively. The edge states 
are absent in the armchair terminated nanoribbon due to inter-valley scattering. For the zigzag nanoribbon, the K and ′K  valleys are well 
separated and edge states are present, coloured red and blue on different sides of the boundary. We see that the pair of edge states at two 
boundaries are the same and equal to N/2 for each spin for even N layer graphene, while unbalanced edge state numbers occur for odd N-
layer graphene. Right figure, upper panel (zero line modes): the varying site potentials for a monolayer or varying electric field for multilayer 
graphene. At the interface across which the staggered sublattice potential or electric field direction changes sign, 1D topological ZLMs are 
present for both armchair and zigzag terminated interfaces, as shown in the fourth and fifth columns labelled by di and ei  
(i  =  1–5), respectively. The number of ZLMs propagating parallel or antiparallel to the interface is equal to i per spin (labelled in blue or red, 
respectively). Apart from the similarities, there are two differences between the band structures in the fourth and fifth column: (1) Gapless 
ZLMs are present in the zigzag terminated interface while a relatively small band gap occurs for ZLMs along an armchair terminated 
interface due to strong inter-valley scattering; (2) gapless edge states occur for a zigzag terminated ribbon at the outer boundary rather than at 
the interface, as plotted in the fourth column in gray. Reprinted with permission from [46], copyright 2010 American Physical Society.
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kind of spin-valley coupling physics can also be applied to 
the low-buckled honeycomb-lattice structures (e.g. silicene 
and germanene) by externally breaking the inversion symme-
try [317, 318]. The analogy between valley and spin degrees 
of freedom as well as their interplay in a system with strong 
spin–orbit coupling provides superb properties and promis-
ing applications in the next generation of spintronics and 
valleytronics [51, 52, 314–330]. Several excellent reviews 
on the physics and possible applications based on the spin-
valley locking have been published already, so they will not 
be mentioned further here [320–323]. Apart from these fas-
cinating properties pertaining to the Fermi levels lying inside 
the valance or conduction bands, when the Fermi energy is 
located inside the bulk gap, the bulk band topology also leads 
to other striking transport properties, i.e. the QVHE in anal-
ogy to the QSHE as will be discussed below.

4.2. Quantum valley-Hall effect

Both the monolayer and Bernal-stacked multilayer graphene 
are zero-gap semiconductors with distinct dispersions at the 
Dirac points K and ′K . A topologically nontrivial bulk gap can 
be opened to initiate the QVHE when the inversion-symmetry 
is broken, e.g. by introducing a staggered sublattice potential 
in monolayer graphene or by applying a perpendicular electric 
field in multilayer graphene. Distinct from the rigorous defini-
tion of the topological indices of the QAHE and the Z2 TIs, 
the QVHE is simply characterized by the valley Hall conduc-

tivity given by ( )σ σ σ= − ′ /2xy
v

xy
K

xy
K  for the spinless case, where 

σ ′
xy
K K,  is obtained by integrating the Berry curvatures near val-

leys K and ′K  by using the low-energy continuum model. 
When the bulk band gap is small, the finite Berry curvatures 
are mainly concentrated at the Dirac points, with the two val-
leys being well-separated. In the absence of the inter-valley 
scattering, the resulting valley Hall conductivity assumes an 
integer (half-integer) for even (odd) N-layer graphene.

Such a bulk quantization only has edge correspondence at 
specific system boundaries without strong inter-valley inter-
action. For example, zigzag ribbon geometries with a large 
momentum separation between valleys can support gapless 
edge modes, manifesting the quantized valley-Hall conduc-
tivity of the bulk (an exception is the monolayer case where 
there are only flat bands connecting two valleys in the same 
conduction or valence band). For even N, there are N/2 pairs 
of valley-helical edge modes located at both zigzag bounda-
ries, in consistence with the quantization of the valley Hall 
conductivity. However, for odd N, a qualitatively distinct 
feature presents for the valley Hall edge modes that we shall 
discuss in detail later [54]. Since there must be no inter-valley-
scattering, the quantum valley Hall effect can be considered as 
a ‘weak’ TI when compared with the topologically-protected 
quantum Hall effect. This scenario resembles the requirement 
of the time-reversal symmetry protection for the Z2 TI.

Nevertheless, the valleys binary degree of freedom is dif-
ferent from the electron spin and there is no rigid bulk-edge 
correspondence for the QVHE, which can be seen from the 
following facts: (1) there are no gapless valley Hall edge 

modes for ribbons where valleys K and ′K  are strongly cou-
pled, especially in the armchair case (see the left column of 
figure  16); (2) there are no gapless edge states for mono-
layer graphene even in zigzag nanoribbons, as shown in 
figure  16(b1). Therefore, in the following, we centre on the 
topological properties of mono- and multilayer graphene and 
only discuss the edge states in zigzag nanoribbons.

For monolayer graphene, the inversion symmetry can be 
broken by using a substrate with inequivalent AB sublattice 
potentials, such as a hexagonal boron nitride (h-BN) mono-
layer [331–333], or by adsorbing top-site adatoms in a certain 
type of sublattice [47]. When the inversion symmetry is bro-
ken, the Berry curvature has opposite signs at the K and ′K  
valleys due to the time-reversal invariance ( ) ( )Ω − = −Ωk k , 
as shown in figure 16(c1), which gives rise to opposite Chern 
numbers =C 0.5K  and = −′C 0.5K  at different valleys for 
each spin [52]. Therefore, when the spin degree of freedom 
is invoked, the Chern numbers for the K and ′K  valleys are, 
respectively, ±1, which resemble the Chern numbers for the 
spin-up and -down copies in the QSHE. However, there are no 
gapless edge states but flat bands connecting valleys K and ′K  
in the zigzag nanoribbons with well-separated valleys, as illus-
trated in figure 16(b1), in contrast to the gapless edge states in 
the QSHE. When the electron-electron interaction is included, 
the flat bands become dispersive and the spin-degeneracy is 
lifted, thus inducing spin-polarized edge modes with opposite 
spin-polarizations at opposite boundaries [334, 335]. This is 
also an approach to magnetize graphene for applications in 
spintronics.

In Bernal stacked multilayer graphene, the quasiparticles 
are chiral in the sublattice space. In the long wavelength limit, 
the effective AB sublattices degree of freedom in multilayer 
graphene is intimately related to the top/bottom layers degree 
of freedom, which is different from that in monolayer gra-
phene with AB sublattices in the same plane. This makes 
it possible to break the inversion symmetry by applying a 
perpend icular electric field (equivalent to introducing differ-
ent site potentials in the top/bottom layers), which can also 
open a bulk band gap at valleys K and ′K , as displayed in the 
second column of figure 16. In bilayer graphene, contrary to 
the half-Chern number contribution in monolayer graphene, 
each valley contributes to a unit Chern number. This leads to  
the formation of gapless valley-helical edge states in the zigzag  
nanoribbons. For an even number of layers, the edge states 
are balanced at each edge. However, they are unbalanced for 
an odd number of layers, as shown in figure 16 where the red 
lines indicate the edge states within one boundary while states 
in blue are localized on the other side [53, 54]. Different from 
the QAHE chiral edge states, backscattering is possible due 
to the spatial overlapping of these counter-propagating edge 
states, as their large momentum separation protects them from 
the long-range scattering potential. If atomic short-range scat-
tering does occur, e.g. through armchair termination of the 
graphene nanoribbon, then the valley-Hall conductance is no 
longer quantized and the edge states can even be destroyed, 
as in the case of time-reversal symmetry breaking scattering 
in Z2 TIs.
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Similar results are expected in silicene [208, 270, 336], 
germanene, and other artificial honeycomb lattice systems 
such as photonic crystals and optical lattices [153]. This val-
ley-related physics can also find application in square optical 
lattices, which have high tunability and hence the QVHE may 
be realized by applying valley-dependent gauge fields [337].

In addition to the breaking of sublattice symmetry, it is 
theoretically shown that the strain aligned along three main 
crystallographic directions of graphene can result in a valley-
opposite gauge field, which corresponds to a strong uniform 
magnetic field and induces Landau quantization of the Dirac 
dispersion [338]. However, the valley-opposite character of 
the gauge field, constrained by the time-reversal symmetry, 
makes the Landau quantization exhibit opposite signs at val-
leys K and ′K , which leads to the formation of the QVHE 
[338]. These pseudo-magnetic fields have been exper-
imentally observed in highly strained graphene nanobubbles 
grown on Pt (1 1 1) with a magnitude of greater than 300 tesla 
[339] and in artificial honeycomb lattice of carbon monox-
ide molecules over a 2D electron gas at a Cu (1 1 1) surface 
[340]. Similar results have been generalized into bilayer gra-
phene [341], twisted bilayer graphene [342, 343] and photonic 
crystal structures in honeycomb lattice [344–346] both theor-
etically and experimentally. Recently, by applying the exter-
nal out-of-plane magnetic field, the valley polarized Landau 
levels have been experimentally observed in monolayer  
graphene [347].

4.3. Coexistence of the QVHE and other topological phases

Strictly speaking, an insulator without (with) time-reversal 
symmetry can be classified into several groups according 
to their different Chern numbers (Z2 index). In general, 
these topologically distinct phases cannot coexist simulta-
neously. For example, it is impossible to find a material that 
is both a QAHE structure and a Z2 TI, because the former 
requires breaking of time-reversal symmetry while the lat-
ter requires its preservation. However, the QVHE originates 
from the local Berry curvature around Dirac points that are 
well separated in momentum space. Therefore, in principle 
it does not conflict with the QAHE or a TI that originated 
from the global topology of the band structure, and should 
be compatible with either of them. This will now be dis-
cussed below.

4.3.1. Time-reversal invariant systems. In honeycomb lattice 
materials, there are two representative physical mechanisms 
that can give rise to a Z2 TI. One is to introduce intrinsic spin–
orbit coupling into a monolayer graphene. It was shown that 
in Haldanes model or Kane–Meles model, this intrinsic spin–
orbit coupling competes with the inversion-symmetry break-
ing term, i.e. the staggered sublattice potential [9]. Therefore, 
this kind of TI based on intrinsic spin–orbit coupling cannot 
coexist with the QVHE. The other mechanism is to consider 
the Rashba spin–orbit coupling in gated Bernal stacked gra-
phene multilayers [53, 54]. Contrary to the intrinsic spin–orbit 

coupling induced TI phase where the spin degenerate gapless 
edge states connect the conduction and valence band edges 
of the K and ′K  valleys, respectively, in the Rashba spin–orbit 
coupling induced TI the gapless edge modes link the conduc-
tion and valence band edges in the same K or ′K  valley (see 
figure 2(l)), which gives rise to a well-defined valley Chern 
number. Therefore, the Kramers-degenerate pairs at the edge 
possess opposite spins as well as opposite valleys, as dis-
played in figure 17, thus the QVHE and Z2 TI can be realized 
simultaneously.

4.3.2. Time-reversal symmetry breaking systems. Although 
a well-defined valley index can also be given to the QAHE 
edge states in monolayer and Bernal-stacked multilayer gra-
phene, the inversion symmetry relates the K and ′K  valleys 
and guarantees the equal contribution of these two valleys 
to the Chern number and hence the number of edge states. 
As a consequence, the edge modes from both valleys prop-
agate along the same direction, exhibiting a chiral propagation 
nature and giving rise to a vanishing valley current [46, 253, 
300], which is different from the case of a Z2 TI in multi-layer 
graphene where the edge states in different valleys are related 
via the time-reversal symmetry and hence propagate in oppo-
site directions [53]. When the inversion symmetry is further 
broken, for example because of a low buckled structure [266, 
267] or a staggered sublattice potential [206, 276], a band 
inversion is induced in one valley while the band gap in the 
other valley is preserved, then the unbalanced contribution to 
the Chern number from these two valleys leads to a new type 
of topological phase, i.e. the valley-polarized QAHE phase 
[206, 266, 267, 276].

This new phase has been reported in monolayer silicene 
[266, 267] and half-hydrogenated Bi bilayers [206, 276], 
which possess the charactersitics of both QVHE and QAHE. 
In monolayer silicene, the joint influence of the Zeeman 
field and Rashba spin–orbit coupling leads to a QAHE with 
a Chern number of =C 2, equally contributed from valleys  
K and ′K , similar to that in graphene. Unlike monolayer  
graphene, two types of Rashba spin orbit-coupling, intrinsic 
and extrinsic, can exist in silicene, either of which can induce 
the QAHE. However, their coexistence leads to competition, 
so that the contributions to the Chern number from valleys 
K and ′K  are, respectively, =C 1K  and = −′C 2K , resulting in 
a Chern number of = + = −′C C C 1K K  and a valley Chern 
number of = − =′C C C 3V K K . As shown in figure 17(c), such 
a valley imbalance induces both a net valley current and a net 
charge current at each edge of the zigzag silicene nanoribbon 
[266]. For the half-hydrogenated Bi bilayer, however, due to 
the strong sublattice imbalance, the Chern number contrib-
utions from the two different valleys are, respectively, =C 1K  
and =′C 0K , indicating a charge Chern number of =C 1 and 
a valley Chern number of =C 1V  [266, 267]. It is noteworthy 
that, although the Z2 TI and the QAHE cannot exist simul-
taneously, the time-reversal symmetry breaking QSHE can 
coexist with the QAHE, in the same manner as reported  
in [348].
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4.4. Topological zero-line modes

4.4.1. Proposals and electronic structures. When the valley 
Hall topologies are varied spatially, e.g. by applying electric 
fields in different directions, a topological ZLM arises along 
the interface between the regions with opposite valley-Chern 
numbers. These ZLMs based on topological confinement 
were first proposed by Martin et al in a bilayer graphene con-
tinuum model, as illustrated in figure 18, where two electric 
fields opposite in sign are applied at two regions separated 
by a zero line [349]. Similar to the QVHE in multilayer gra-
phene, chirally propagating gapless edge states are present in 
the zigzag terminated zero-line as displayed in figure 16(d2), 
where an equal number of ZLMs are present in the K and ′K  
valleys propagating along opposite directions.

However, in the armchair-terminated zero-line, the chirally 
propagating edge states are also present despite a relatively 
small, avoided crossing band gap at the crossing points between 
counter-propagating edge states, as shown in figure 16(e2) , 
which is different from the QVHE electronic structure in the 
armchair nanoribbon plotted in figure  16(a2). Although in 
the QVHE there is no rigid bulk-edge correspondence at the 
boundary between the bulk and vacuum, the ZLMs are shown 
to be robust, with their number characterized by the difference 
in the valley Chern numbers across the interface [120, 350]. 
Very recently, according to the original proposal of Morpurgo 
[349], Li et al experimentally reported the evidence of the 
ZLMs at the line junction of two electrically biased bilayer 
graphene with opposite field polarities [351]. This method 
provides a more flexible and tunable way to realize ZLMs that 
strongly benefit their application in valleytronics comparing to 
the ZLMs experimentally observed at the interface of AB/BA 
stacked bilayer graphene as described below [352]. Similar 
results are present in Bernal-stacked multilayer graphene (see 
the 4th and 5th columns of figure 16), while ZLMs can even 
form at the interface between multilayer graphene structures 
with different layer numbers, and the resulting pairs of ZLMs 

are determined by the difference in the Chern numbers of a 
single valley across the interface [353].

This scenario can also be extended to the monolayer gra-
phene case [354], where the quantum valley Hall gap is opened 
by a staggered sublattice potential [333, 355] rather than a 
perpendicular electric field since the AB sublattices reside in 
the same plane. The ZLMs in monolayer graphene with differ-
ent edges have been investigated by employing a tight-binding 
model rather than a long wavelength low-energy continuum 
model. It is found that although gapless ZLMs are present  
at the zigzag-type zero-line interface (see figure  16(d1)),  
an avoided-crossing band gap is opened at the crossing points 
of ZLMs inside the bulk band gap in the armchair-type zero-line 
interface, as displayed in figure  16(e1) [354]. These effects 
can also find application in silicene, where the low-buckled 
structure allows the realization of ZLMs via the applica-
tion of a perpendicular electric field similar to that in bilayer  
graphene [356].

Additionally, ZLMs can also be generated at the interface 
between bilayer graphene structures with different stacking 
orders (e.g. AB or BA stacking) under a uniform electric field, 
as illustrated in figure 19(a) [352, 357, 358]. Since the valley  
Chern numbers that characterize valley topologies change 
sign across the interface between AB and BA stacking layers, 

Figure 17. Schematic of edge state propagation in the zigzag edge geometry for a TI in (a) bilayer (b) trilayer graphene. The arrows on the 
edge channels represent in-plane spin directions (out-of-plane spin component is zero). For trilayer graphene, the major difference from 
the QVHE in figure 16 is that one more pair of time-reversal invariance protected spin-helical edge states emerges at each boundary of the 
zigzag or armchair trilayer graphene ribbon. Note that in the zigzag geometry, all the edge modes are associated with both spin and valley 
degrees of freedom. (c) Schematic of edge states of the valley polarized QAHE. Figure (a) reprinted with permission from [53], copyright 
2011 by the American Physical Society. Figure (b) reprinted with permission from [54], copyright 2012 by the American Physical Society. 
Figure (c) reprinted with permission from [266], copyright 2014 by the American Physical Society.

Figure 18. Side view of gated bilayer graphene configuration with 
a voltage kink. The region where the interlayer voltage changes 
sign (channel) supports bands of chiral zero-modes (dashed line). 
Conventional (non-topological) confinement would correspond to 
the same polarity of bias on both sides of the channel. Reprinted 
with permission from [349], copyright 2008 by the American 
Physical Society.
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the same ZLMs arise along the interface (see figure 19(b)). 
Compared with the ZLMs induced by spatially manipulat-
ing the external electric fields, the different stacking order-
induced ZLMs are rather easier to realize experimentally. Very 
recently, such a scheme was demonstrated in a suspended 
bilayer graphene system with a smoothly-varying interface 
that effectively suppressed the inter-valley scattering due to 
the absence of atomic scale disorders [352]. The uniform elec-
tric field induced ZLMs at the interface separating different 
stacking orders can also find application in low-buckled hon-
eycomb structures, e.g. silicene, where the zero lines form at 
the interface between two regions with opposite buckling con-
figurations [359]. Apart from the zero lines formed in some 
ribbons, the ZLMs has also been experimentally realized in 
superlattice structures, where periodic AB and BA stacking 
patterns are present [360]. Theoretically, similar to the super-
lattices with adjacent AB and BA stacking orders that may 
support ZLMs at the boundaries, ZLMs can also be realized 
in graphene on top of h-BN substrates as a result of lattice 
mismatch [361]. In addition to the line defect exhibited when 
the stacking order of bilayer graphene changes, 1D ZLMs 
can also appear along the line defect of monolayer graphene 
theoretically if a suitable staggered sublattice potential is  
present [362].

In the above, we have mainly described ZLMs based on 
the time-reversal symmetric QVHE, where the time-reversal 
counterpart of the ZLMs at one valley K is located at the other 
valley ′K  [358]. However, this scenario is not merely restricted 
to the interface between two such systems with different val-
ley Chern numbers. In principle, it should exist at any inter-
face separating two different topological orders, e.g. in QAHE 
systems with different Chern numbers (i.e. + −C C/ , + +C C/1 2, 
and + −C C/1 2), in QSHE systems with different topologies, in 
hybrid systems composed of both effects (or Z2 TI [356]), 
and in hybrid systems composed of the QAHE and a Z2 TI. 
To be specific, in monolayer graphene, the contributions of 
the Chern numbers from valleys K and ′K  are identical for 

the QAHE, but are opposite for the QVHE. Therefore, at the 
interface between the two, the difference between the Chern 
numbers is nonzero for the valley K while it vanishes for the 
other valley ′K . As a result, the ZLMs at the interface carry 
only the information of valley K and prop agate chirally only 
along one direction, which is similar to the QAHE chiral edge 
modes but is valley-polarized.

In fact, the interface is not required to be a ‘line’, but may be 
slightly broadened due to mediation from the finite-size effect. 
For example, it is found that 1D ZLMs can also be hosted in a 
narrow graphene nanoroad embedded in h-BN sheets, where 
the boron (or nitrogen) atoms belong to different sublattices 
in two separate h-BN sheets [363]. Due to the inversion-sym-
metry breaking from the unbalanced site-energies in h-BN,  
a bulk band gap is opened at the K and ′K  valleys, which each 
carry half a Chern number of opposite sign. The inverse of 
the sublattice topology across the graphene nanoroad changes 
the sign of the Chern number for each individual valley, lead-
ing to the formation of ZLMs throughout the graphene ribbon 
region.

4.4.2. Transport properties of topological zero-line modes.  
Based on either the low-energy continuum model in the long 
wavelength limit or the tight-binding model Hamiltonian, 
we have now established a fundamental understanding of 
the electronic structure of ZLMs. The gapless modes appear 
in the zigzag-type interfaces where the K and ′K  valleys are 
decoupled, while a relatively small but nonnegligible band 
gap opens in the armchair-type interfaces due to the atomic 
structure induced strong inter-valley scattering. For any type  
of zero lines, the resulting ZLMs are always spatially over-
lapped in real space, which suggests that these counter- 
propagating states should be easily backscattered, especially 
in the case where inter-valley scattering occurs. However, it is 
shown that the wide-spread wavefunctions mitigate the back-
scattering [353, 364] and these ZLMs also play an important  
role in the subgap conductance even in the presence of short-
range disorder scattering [365] as reviewed in below.

To further verify the robustness of the ZLMs, electronic 
transport calculations have been performed using the Green’s 
function technique implemented with the multi-terminal  
Landauer-Büttiker formalism [363, 366, 367]. It has been shown 
that the ZLMs exhibit a chiral propagation characteristic for 
any kinds of zero lines, i.e. periodic, or curved with inter-valley  
scattering. Such a robustness against any specific zero-line 
geometry indicates their striking transport property of zero 
bend-resistance, similar to the dissipationless transport prop-
erty of the quantum Hall effect in some extent. In the presence of 
disorder, either short- or long-range, it is shown that the ZLMs 
are rather robust even under any variation of the path direc-
tions whenever the Fermi-level does not lie inside the avoided 
crossing band gap of the armchair-type zero lines. The corresp-
onding mean free path under some weak disorder is estimated 
to be as large as several microns, which promises innumer-
able applications in low power electronics and valleytronics.  
The robustness against disorder or path directions can be 
attributed to the wide spread of the counter-propagating ZLMs 
carrying opposite valley degrees of freedom [366].

Figure 19. (a) Schematic of the zero line as a interface between AB 
and BA stacked bilayer graphene and (b) the corresponding band 
structure under electric field. Reprinted figure with permission  
from [352].
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According to the zero bend resistance characteristics of the 
ZLMs, when two zero-lines become crossed to form a topo-
logical intersection (see figure 20(a)), the chiral propagating 
modes obey an interesting and counterintuitive current parti-
tion law at the intersection, which depends only on the angle 
of incidence [367]. For example, when the incoming current 
from one terminal flows towards the intersection, the direct 
forward current cross the crossing point is forbidden due to 
the requirement of the chiral propagation, and the outgoing 
currents have only two possible directions, as illustrated in 
figure 20(a). Moreover, a counterintuitive current partition is 
formed because the incoming current prefers to turn a larger 
angle, as shown in figure  20(b) [367]. For the Fermi level 
close to the charge neutrality point (i.e. =E 0.0F ), the split-
ting of the current from any lead (e.g. the right lead) at the 
topological intersection simply depends on the combination 
of α β+  (figure 20(c)) with α (β) being the angle between the 
left (right) and up (down) leads, as shown in figure 20(a). Such 
a counterintuitive current partition can be understood from the 
coupling between the wavefunctions at different paths form-
ing the topological intersection [367].

However, although these ZLMs were theoretically pre-
dicted several years ago and were shown to have great 
application potential, experimental progress has been rather 
limited. The main difficulty is the design and fabrication of 
the devices, which for multilayer graphene require high preci-
sion alignment of the top and bottom gates, not to mention the 
control of eight gates in topological current splitter devices. 
With the development of state-of-the-art techniques for fine-
tuning of the gates, it should be possible for such zero-lines 
to be be engineered in the future. For current splitters made 
of multilayer graphene, at the topological intersection the top 
and bottom electric gates are in principle fixed, so the angles 
can no longer be tuned to realize different current partitions. 
For fixed multilayer graphene systems we must therefore 
explore other approaches to achieve tunability, e.g. by tun-
ing Fermi levels, applying some appropriate electric fields, or 
weak magnetic fields.

5. Summary

In summary, we have provided an overview of the most recent 
research on the topologically nontrivial phases in 2D systems, 
such as Z2 TI, QAHE, and QVHE. A typical 2D material is 
graphene, a Dirac semi-metal with a half-filled valence band. 
The Dirac dispersion around the K and ′K  points are guaran-
teed by the sublattice symmetry and can be gapped by break-
ing this symmetry. Without spin–orbit coupling, a staggered 
sublattice potential can break the inversion symmetry to open 
up a band gap and form a QVHE with each valley spin carry-
ing half a unit Chern number. In this effect, although there are 
no corresponding gapless edge state in monolayer graphene, 
midgap topological confinement states, i.e. ZLMs, can occur 
at the interface, across which the staggered potential changes 
sign. These ZLMs are protected from backscattering by the 
large momentum separation, but become gapped at the spe-
cific armchair zero lines. Moreover, it was shown that the 
ZLMs exhibit striking transport properties, e.g. zero bend 
resistance and counterintuitive current partition laws. Similar 
results can be applied to other honeycomb lattices and chirally 
stacked multilayer graphene. Recently, the ZLMs have already 
been experimentally observed in bilayer graphene through 
the application of a tunable electric field. These electric- 
field-tunable ZLMs provide the potential building blocks for 
constructing the next-generation electronics and valleytronics.

The Haldane model provides another scheme to break the 
chiral symmetry, i.e. by applying an alternating magnetic 
fluxes in a honeycomb lattice. The orbital effect of the magn-
etic field leads to the QAHE with a Chern number of =C 1.  
Although the time-reversal symmetry is broken, Landau  
levels are not formed due to the vanishing total magnetic flux. 
The orbital effect of the magnetic field induced QAHE may be 
seen in a buckled honeycomb lattice with an in-plane magn-
etic field. In addition, to form QAHE, there is another scheme 
that relies on spin–orbit coupling and out-of-plane ferromag-
netism. In both semi-metals (e.g. graphene) and semiconduc-
tors (e.g. 3D-TI thin films), a ferromagnetic order Zeeman 

Figure 20. Current partition at the intersection of zero line modes. (a) Schematic of the zero line intersection. L, D, R, and U represent the 
left, down, right, and up leads, respectively. The angle between left and up leads is denoted by α, and that between right and down leads by 
β. The blue and red arrow lines indicate the chiral propagation of the ZLMs. (b) Partition of the current flowing from the right lead.  
(c) Conductance of the currents from the R zero line to the U and D zero lines as a function of α β+  at the ZLM intersection in (a) for a 
series of β values. Reprinted with permission from [367], copyright 2014 by the American Physical Society.
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field can invert the conduction and valence bands and induce 
crossing points. The spin–orbit coupling can lift the accidental 
degeneracies at the crossing points, open up a bulk band gap, 
and thus give rise to the QAHE. Various semi-metals and sem-
iconductors have been proposed as host materials, as listed 
in table 2, where the ferromagnetic order can be established 
by magnetic doping, considering magnetic insulating sub-
strates, or functionalizing. Alternatively, the QAHE can also 
be realized in materials with spontaneous ferromagnetism, 
like transition metal oxides and heterostructures composed of 
magnetic thin films. However, since the basic requisite is just 
the breaking of time-reversal symmetry, ferromagnetic metal 
with Anderson disorders, and systems with in-plane magneti-
zation or anti-ferromagnetism may also be possible. Although 
the QAHE has been extensively studied on elements with an 

outer p-shell, the explorations for transition metal compounds 
have been rather limited. The influence of the strong electron-
electron correlations of these transition metals on the QAHE 
is also unclear. So far, the QAHE has only been observed in 
experiment under extremely low temperatures in magnetically 
doped 3D-TI thin films with the Chern number of =C 1. The 
recent progress has shown the potential of realizing QAHE 
in graphene on insulating ferromagnetic substrate. For future 
applications, a large band gap (or high temperature) and 
simple experimental design are the motivations behind cur-
rent research. Moreover, a large Chern number also benefits 
practical applications due to the strong quantized Hall-current 
density. In addition, artificial lattices with high tunability, like 
cold atoms in optical lattices, provide alternative platforms for 
simulation of the QAHE.

Table 2. Possible materials for realizing the QAHE. 1st column: possible materials for realizing the QAHE. 2nd column: the corresponding 
Chern numbers. 3rd column: some remarks. 4th column: band gaps calculated from ab initio. Last column: relative references.

Material C Remark Gap Reference

HgTe QWs 1 [238]
InAs/GaSb QWs 1 Magnetic doping [239]
Junction QWs 1 [123]
3D TI thin film 1 2D limit, magnetic doping [40]
3D TI thin film Thickness dependent Beyond 2D limit, magnetic doping [298, 299]
3D TI thin film/FM 1 ∼10 meV [291]
n-p codoped 3D TI thin film 1 >  50 meV [251]
G 2 Theory [46]
3d atom/G 2 ∼1–10 meV [300]
5d atom/G 2 Electric field tunable ∼10–100 meV [48]
Ru atom/G −2 4d atom ∼10 meV [137]
Co/Rh atom/G 1 Impurity-band contribution ∼50/100 meV [259]
G/BiFeO3 (1 1 1) 2 ∼1 meV [49]
G/RbMnCl3 (001) 2 ∼1–10 meV [262]
G/Skyrmion 2 ∼30 meV [309]
Skyrmion lattices 1 ∼100 meV [307, 308]
MLG 4 or 2 Theory [300]
Silicene 2 Theory [265]
Silicene 1 Theory, competition between λR

int and λR
ext [266]

3d atom/silicene 2 ∼1 meV [268–270]
4d atom/silicene −2 or 1 Depend on atom type ∼10 meV [271]
Bi (1 1 1) BL -2 Theory [272]
I-stanene 1 Half functionalization ∼340 meV [275]
I-germanene 1 Half functionalization ∼60 meV [275]
Fun. silicene/germanene 2 or  −1 Fractional one-side saturation [274]
Fun. Bi (1 1 1) 1 -H, half functionalization ∼200 meV [206, 276]
Bi(BN) 1 ∼100 meV [209]
W atoms on halogen-Si(1 1 1) 1 Artificial honeycomb lattice ∼100 meV [286]
2D triphenyl-Mn 1 Organic material ∼9.5 meV [287]
2D triphenyl-In 1 Flat Chern band insulator [368]
Heterostructure QWs −3,−2,−1, 1 Material dependent 1–700 meV [288]
CdO/EuO or GdN/EuO 1 Intrinsic QAHE [289, 290]
HgCr2Se4 thin film Thickness dependent Intrinsic QAHE [292]
(SrIr/TiO3)n (n  =  1, 2) n [295]
Monolayer La2MnIrO6 1 ∼26 meV [295]

Note: In this table, λR
int and λR

ext indicate the strength of intrinsic and extrinsic Rashba spin–orbit couplings, respectively; Bi(BN) represents the functionalized 
Bi (1 1 1) bilayer where one side is saturated by B atoms while the other side is saturated by N atoms. Abbreviates used, G: graphene; BL: bilayer; MLG: 
multilayer graphene; BLG: bilayer graphene; Fun.: functionalized; QWs: quantum wells.
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Another approach to break the chiral symmetry of gra-
phene is to introduce the next-nearest-neighbour hopping 
related intrinsic spin–orbit coupling. The resulting QSHE can 
be regarded as a combination of two copies of the Haldane 
model with opposite spins and Chern numbers, which gives 
rise to spin-helical edge modes. These states are stable even 
when sz is not a good quantum number, reflecting the topo-
logical nature that is characterized by a binary-valued Z2 topo-
logical index. This is a brand-new classification of insulators 
with time-reversal invariance. Though the intrinsic spin–orbit 
coupling of graphene is extremely weak, it can be externally 
engineered via various methods, like adsorbing heavy atoms. 
The Z2 TI also exists in other Dirac materials, e.g. honeycomb 
lattices of group-IV elements, organic materials, etc as listed 
in table 1. Except for these intrinsic Dirac materials with two 
inequivalent Dirac cones, strain and electric fields can also 
induce Dirac dispersions that can be gapped by the spin–orbit 
coupling to form a Z2 TI.

Apart from the Dirac materials, semiconductors with a 
small band gap can also generate a Z2 TI when spin–orbit 
coupling is strong enough to close the band gap, and hence 
heavy atoms such as Bi, Tl, Te, and Hg may play an impor-
tant rule. The Bi (1 1 1) bilayer is a good example of a 
group-V element. Although the Bi bilayer has a honey-
comb-lattice structure, the full-filled valence bands make it 
an insulator rather than semimetal with a bulk gap opened 
at the Γ point. The strong spin–orbit coupling from Bi 
induces a band inversion to form a TI. Similar band inver-
sion induced TIs can also be found in other atomic crystal 
layers, e.g. Bi or Tl based III-V compounds and Bi based 
V-VII compounds. Superior to the TI with light atoms, the 
heavy atom based TIs usually have large nontrivial band 
gaps, which offers the possibility for room-temperature 
applications. Additionally, functionalization is another use-
ful approach to obtain TIs with a large band gap. So far, the 
Z2 TI has already been experimentally observed in CdTe/
HgTe/CdTe and InAs/GaSb semiconductor quantum wells, 
based on band inversion. Such kind of band inversion is also 
expected to occur by disorders, leading to the ‘topological 
Anderson insulator’.

On one hand, these topological phases possess topologi-
cally protected edge modes that perform as perfectly conduct-
ing 1D wires. This holds great potential as building blocks in 
dissipationless quantum electronic devices, like interconnects 
between chips. The helical edge states of opposite spin (val-
ley) in QSHE (QVHE) may also have potential applications 
in spin/valley-related electronics, for example, spin (valley) 
filter. Moreover, the proximity effect of Z2 TI on supercon-
ductors leads to the formation of an exotic quasi-particle of 
Majorana fermion [369, 370], which may have promising 
applications in fault-tolerant quantum computation [371, 
372]; the resulting Andreev reflection and crossed Andreev 
reflection also possess promising applications in quantum 
teleportation and quantum computation by making use of the 
spatially-separated electrons with entangled spin and momen-
tum [373–376]. Similar proximity effects of the QAHE/
QVHE proximity-coupled to superconductors are still open 
issues for future study.

On the other hand, although many experimental progresses 
have been made towards the realization of these 2D topological 
phases, the low observation temperature still limits the potential 
applications. Thus, searching for topological phases that may 
preserve at room temperature is crucial. Moreover, high Chern 
number QAHE or high valley Chern number QVHE/ZLMs 
that can give stronger electrical signal are also highly desired. 
Furthermore, from the theoretical point of view, searching for 
new mechanisms to give rise to QAHE, e.g. using in-plane 
magnetization, or other topologically protected phases may 
also be interesting topics for the further investigation.

Note added: During the preparation of the present review, 
we become aware of several interesting review articles about 
the QAHEs [377–380].
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